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ABSTRACT 

Spatial surveillance systems can be an effective and efficient way 

to provide early spatio-temporal warning signals of infectious 

diseases outbreaks. The development of spatial surveillance 

systems that can handle near-real time hospital spatial data have 

proven critical for directing intervention strategies and for risk 

mitigation during the ongoing monitoring and response to COVID-

19. GeoMEDD, a geographic monitoring tool, was developed for 

such near-real time assessment of emergent localized disease. As 

the response to COVID-19 changed, moving through phases such 

as increased scientific understanding, testing variability, vaccine 

availability and uptake, and new variants, so GeoMEDD has also 

evolved. Here we present two advances for GeoMEDD; a fully 

automated cluster environment with a spatial database at its heart 

and a cluster tracking module to classify clusters based on the 

transition state of the cluster lifecycle. Our detailed use case 

analysis shows that these advances have improved local and global 

cluster analysis, contextual information dissemination, monitoring 

emergence based on underlying spatial structure and cluster 

evolution analysis. We believe that the addition of the fully 

automated cluster environment to GeoMEDD would be particularly 

beneficial for health institutions as well as governmental health 

organizations for disease outbreak detection due to the efficiency 

in data ingestion and analysis, , while the addition of the cluster 

tracking module will advance research into the mechanics behind 

disease diffusion in space and time. 
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1  Introduction 

The spread of Covid-19 involves multiple spatial processes [1] and 

therefore a geographic approach including geospatial analytics is 

vital in understanding and responding to the disease [2]. Typically, 

this is achieved using traditional spatial statistical analysis or 

hotspot/cluster detection of disease data [3]. Spatial statistical 

methods often incorporate socio-economic and demographic risk 

factors [4, 5]. For example, utilizing a multivariate model, Andree 

Ehlert [6], in his work on determining the socio-economic 

determinants of Covid-19 in Germany, determined deaths are 

positively associated with average age, population density, and the 

number of people working with the elderly. Similarly, a statistical 

modelling study in the United States by Mollalo et al. [7] identified 

income inequality, median household income, proportion of black 

females, and the proportion of nurse practitioners to be positively 

associated with Covid-19 incidence. While these types of spatial 

statistical analysis are important to unpack the reasons why Covid-

19 spreads as it does, real-time monitoring and response analytics 

are also required to address that spread as it occurs, in as close to 

real-time as possible. To this end spatial and spatio-temporal 

hotspot/cluster, detection and surveillance are vital to identify 

emerging patterns and support intervention strategies [8, 9].  

The high reproductive number (R0) associated with Covid-19 [10] 

suggests that cases will cluster in space and time, which in turn 

means methods should capture both those emerging concentrations 

[11], and their next step diffusion [12]. A frequently employed 

Covid-19 cluster detection approach is the space-time scan statistic 

(SaTScan) [13] or variants thereof [14, 15, 16, 17]. For example, 

Rosillo et al. [18] used SaTScan to develop a real-time surveillance 

system to detect active clusters of COVID-19 in Spain. They 
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suggested that SaTScan based surveillance of COVID-19 can be 

particularly useful during a low-incidence scenario to help tackle 

emerging outbreaks [18]. Desjardins et al. [15], using prospective 

SaTScan and county level case data from Johns Hopkins University, 

were able to identify ‘active’ and emerging clusters across the 

entire United States for a particular time period and they also 

posited that the same approach could be run continuously for the 

ongoing surveillance of Covid-19 clusters. 

The majority of the published Covid-19 clustering work use coarse 

data due to data access and confidentiality constraints. A few 

exceptions include Greene et al. [16] who developed a “SARS-

CoV-2 percent positivity cluster detection system” for census tract 

aggregations and a SaTScan prospective space-time scan statistic. 

Even more granular, Ladoy et al. [19] used SaTScan to identify 

clusters of positive cases by residential location in the state of Vaud, 

Switzerland. Using cluster attributes such as the median age of 

individuals and total number of cluster members, they were able to 

identify that cluster size was positively related to the presence of 

individuals with high Covid-19 viral load. 

One fundamental challenge is that while more traditional 

approaches to disease cluster detection will always be important for 

spatial researchers and epidemiologists, the lack of a near-real time 

data-to-analysis mindset is a barrier for operationalization in a 

hospital setting [20]. When responding to an outbreak, it is vital to 

not only learn about the spatial structure and pattern of the 

continuously evolving pattern, but to do so in a time frame that is 

scalable, and operationally appropriate so that hospitals or health 

departments can use outputs to inform response teams.  To be 

effective, data also needs to be as granular as possible, ideally at 

the residential level, and the analysis should be able to analyze 

continuously inflowing updates. To achieve this requires 

developing novel cluster methodologies that can work at various 

spatial scales as well as developing spatial data infrastructures 

(SDI) that can handle hospital “big” data in real-time [1]. 

GeoMEDD was developed to solve this problem as a near real-time 

assessment of emergent disease suitable to guide a local 

intervention strategy [20]. Through the integration of a spatial 

database and clustering algorithm, GeoMEDD provides multiple 

spatial and temporal perspectives on a highly dynamic disease 

landscape using various space and time thresholds [20]. Initial work 

has shown that GeoMEDD is effective in revealing clusters at 

various spatial scales as well as giving insights about why a cluster 

exists at a particular location and how it evolves through space and 

time [20]. 

Even though GeoMEDD is currently being utilized as a syndromic 

surveillance tool by hospitals and public health organizations [21, 

22], new strategies need to be developed as the disease situation 

changes. In this paper, we propose two advances for GeoMEDD, 

including a fully automated cluster environment and a cluster 

tracking module to classify clusters based on the transition state of 

the cluster lifecycle. We also provide the technical implementation 

details of setting up a GeoMEDD clustering environment in a 

hospital setting. A pseudocode implementation of the cluster 

tracking algorithm is provided and examples for real-world 

scenarios where GeoMEDD cluster surveillance and monitoring 

could be beneficial are provided as use cases. 

2  Methods 

2.1  GeoMEDD 

GeoMEDD [20] conceptually utilizes a density-based spatial 

clustering of applications with noise (DBSCAN) [23] approach that 

groups together points, which are closely packed together. Similar 

to DBSCAN, GeoMEDD does not force any shape constraints 

(such as a circular buffer) on cluster growth thus providing a more 

realistic view of the underlying spatial process. GeoMEDD has 

three different parameters, the minimum neighbor parameter αmin, 

the maximum distance parameter βmax, and the interval parameter 

τ. While the αmin and βmax parameters determine the cluster core 

(connected to αmin neighbors which are within a distance of βmax) 

and fringe members (not a core member, but within a distance of 

βmax from a core member), the τ parameter is used to filter out old 

data points as well as to visualize the clusters at various time scales 

(Figure 1). At any time t, the dynamic dataset D(t) used for 

clustering in GeoMEDD can be represented using Equation 1, 

where p is the case occurring at time T(p). The neighborhood 

definition for a case i at time t is provided in Equation 2 where j is 

another case at a distance (dist(i,j)) less than βmax. 

      𝐷(𝑡) = {𝑝|𝑡 − τ ≤ T(p) ≤ t                                                  (1)   

      𝑁𝐵(𝑖, 𝑡) = {𝑗 ∈ 𝐷(𝑡)|𝑑𝑖𝑠𝑡(𝑖, 𝑗) ≤  βmax }                           (2) 

For initial Covid-19 syndromic surveillance, three types of clusters 

were utilized, sentinel (αmin=2 and βmax=100m), micro (αmin=5 and 

βmax=500m), and neighborhood (αmin=10 and βmax=1000m) [20]. 

Sentinel clusters acted as an early warning system of a potential 

outbreak, while micro clusters identified a growing outbreak or a 

higher concentration of disease cases and the neighborhood clusters 

signaled broader area growth – possibly as sentinel or micro 

clusters grew or merged. The common τ values utilized for Covid-

19 surveillance were 21, 14, 7, and 3 days. The values for the 

different GeoMEDD parameters were set based on the suggestions 

from health experts and medical practitioners. These values are 

flexible, and it is entirely likely that new COVID-19 phases, or 

different geographies (such as rural settings), or even new disease 

combinations (such as adding in Flu), will result in parameter 

values being adjusted to capture the dynamic spatial patterns of the 

disease.  
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Figure 1. GeoMEDD transition for a single day for A) sentinel 

cluster B) micro cluster with τ = 7 days. The numbers at the 

bottom of each points indicate the days before the point was 

created. 

2.2  GeoMEDD technical implementation 

GeoMEDD was initially developed as a standalone software with 

positive COVID-19 case data being uploaded as comma separated 

value (CSV) files. The code repository along with software for the 

standalone implementation can be downloaded from GitHub 1 . 

While the standalone software was convenient for developing daily 

cluster reports, the manual intervention needed in uploading case 

data as well as copying cluster outputs was too laborious for the 

near real-time monitoring required in an ongoing pandemic 

response. The surveillance capability for GeoMEDD is defined as 

near real-time rather than real-time as manual correction of 

erroneous geocodes, and lag in test result data turnaround makes 

real-time monitoring impossible.  There were also other 

impediments, such as saving historical clusters for retrogressive 

analysis to identify trend changes, and difficulties involved in 

combining cluster outputs with other spatial layers such as care 

home locations and socio-behavioral data. In response to these 

challenges, the GeoMEDD clustering environment was developed 

with a spatial database at its heart, acting as an interface between 

the collaborating hospital system and various data analytics. 

2.2.1 GeoMEDD Clustering Environment 

The GeoMEDD Clustering Environment (Figure 2) is a 

technological stack with each component performing a well-

defined task to aid cluster monitoring, visualization, and analysis. 

The starting point and one of the key components of the 

environment is the geocoder module (Figure 2). Geocoding is a key 

aspect in cluster generation as the quality of clusters in-terms of 

cluster shape, size, and accuracy is directly dependent on the 

quality of the geocode. To improve the geocoding turnaround, three 

different geocoders are utilized. The addresses that are geocoded to 

a sufficiently accurate location (based on the geocoder quality 

codes) are pushed to the spatial database. The geocoder module is 

implemented in Python and works as an automated batch job 

process. 

                                                                 
1 GitHub url : https://github.com/JayakrishnanAjayakumar/SyndromicSurveillance 

The spatial database (Figure 2) is the most important component in 

the GeoMEDD Clustering Environment, which stores the geocoded 

test data along with other contextual attributes. Along with the test 

data, a wide range of spatial socio-demographic data such as 

building parcels, census enumeration boundaries and data, and care 

homes are also ingested. The key motivation for utilizing a spatial 

database is the capability to retrieve the clusters which are saved 

back to the spatial database for retrospective analysis, query report 

generations, enhanced daily analysis and production cartography, 

and the generation of custom warnings based on cluster attributes. 

The spatial database also supports spatial querying (such as finding 

all COVID-19 cases within a set distance of a care home), some of 

which can be completely automated to again generate warnings and 

reports. PostgreSQL with PostGIS extension is used as the 

underlying spatial database infrastructure. 

 

 

Figure 2. GeoMEDD Clustering Environment 

2.2.2 GeoMEDD Cluster Generator 

The cluster generator performs three main tasks including i) the 

generation of new clusters ii) saving generated clusters back to the 

spatial database and iii) tracking clusters and generating reports and 

warnings based on the cluster outputs. New clusters are generated 

from daily COVID 19 test results using a batch job. These data are 

generally represented as spatial points, but to facilitate better 

visualization, GeoMEDD clusters are converted to a polygon using 

the convex hull operation, which creates a boundary based on the 

outermost points assigned to any cluster. These polygons are 

converted to an ESRI shapefile (the most common GIS based map 

file) for additional spatial analytical or cartographic downstream 

work in a GIS or dashboard environment. 

All output GeoMEDD clusters are saved to the spatial database. 

This strategy has a twofold advantage; firstly, it facilitates 

longitudinal analysis of clusters and secondly it helps in adding 

contextual information as the clusters can now be spatially joined 

with other data layers acquired from the census, or measures of 

social vulnerability, or even information about the built 

environment such as building outlines. The longitudinal analysis is 

vital as this can help show how the clusters (and therefore the 

epidemic) has diffused, or is diffusing at different geographic scales. 

https://github.com/JayakrishnanAjayakumar/SyndromicSurveillance
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2.3  Cluster Tracking 

In GeoMEDD, cluster tracking is implemented based on the 

MONIC (Modeling and Monitoring Cluster Transitions) 

framework [24]. According to the MONIC life cycle model, a 

cluster can be in any of the five transition states including new, 

merge, split, survive, and dead. When a new cluster emerges, it can 

transition to any of the other four states based on its interaction with 

other clusters over time. The interaction between clusters is 

assessed by first utilizing a spatial intersection test for identifying 

the matching candidates followed by cluster membership 

comparison for an accurate assessment. The membership 

comparison consists of two important methods, overlap and 

matches, from which the various transition stages are calculated. 

 

DEFENITION 1 (Overlap). Let X, Y be two clusters at time step 

ti and tj (tj > ti) respectively. Then “overlap of X to Y” at time tj is 

defined in Equation 3 where Xj is the total number cases in X at 

time tj. 

      𝑜𝑣𝑒𝑟𝑙𝑎𝑝(𝑋, 𝑌) =  
𝑋𝑗 ∩ 𝑌

𝑋𝑗
                                                          (3)   

DEFENITION 2 (Matches). Let X, Y be two clusters at time step 

ti and tj (tj > ti) respectively. Further, let z such that zmatch∈ [0.5,1] 

is a threshold value. Then “Y is a match for X at time t j subject to 

z”, only if Y is the cluster with maximum overlap for X and the 

overlap of X to Y is at least z. 

 

Based on the definitions for overlap and matches the external 

transition states for the clusters can be defined (Table 1). Apart 

from external transition, the clusters which have survived can 

undergo internal transitions that changes the size and orientation of 

clusters (Table 1). Figure 3 and Figure 4 show the various transition 

states for clusters. A detailed pseudocode for the tracking algorithm 

is provided in Appendix A. The technical workflow for cluster 

tracking in the GeoMEDD environment is shown in Figure 5. 

Unlike MONIC, the spatial intersection test used in this case 

provides a faster first pass for cluster similarity checking especially 

when the total number of clusters become high. 

Table 1: Transitions states for a cluster 

Transition Type Transition Indicator 

 X survive to Y If Y after X and Y only 

matches to X 
 X splits to 

Y1…Yp 

X overlaps Y1…Yp 

External X merges with Y If Y after X and Y 

matches X1…Xp 

 X disappears X does not overlap with 

any Y’s 

 X emerges  

 X expands X adds more members 

Internal X contracts X loses members 

 No change in X  

 

 

Figure 3. Cluster transition examples A) merge B) split for 

micro cluster with τ = 7 days 

 

Figure 4. Cluster lifecycle A) expanding, B) contracting, and C) 

dead for micro cluster with τ = 7 days 

 

Figure 5. Cluster tracking workflow 

3  Use cases 

3.1  GeoMEDD to determine general epidemic 

trends 

For the following section, we draw on our experiences of 

monitoring disease clusters in northeast Ohio. The results presented 

are typical of the type that were used to provide ongoing operational 

insights for local pandemic response. 

While the major motivation for developing GeoMEDD is to 

understand the spatial spread, pattern and complexity of underlying 
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phenomena at a local scale (at building, street or sub-neighborhood 

level), the clusters generated can be aggregated for insights into 

more regional trends. As an example, the seven-day rolling sum 

graph of the micro cluster count vs day (Figure 6A) clearly 

indicates a surge in cluster activity between November 2020 and 

January 2021 for NE Ohio. For this graph, only new clusters are 

accounted for and clusters that have been generated from a 

transition process such as splits or merges are not counted. The 

fourteen-day rolling average graph of the average cluster dispersion 

vs day (Figure 6B) clearly indicates that during the same period, 

the average cluster dispersion was also consistently higher. Cluster 

dispersion is defined as the median distance between all the 

members in a cluster and can be a crucial indicator for how clusters 

are dynamically changing with time. An increase in cluster 

dispersion generally indicates an increase in cluster merging 

activity, suggesting an increasing spatial spread of the underlying 

process. Finally, the bar chart between the average ages of members 

(in this case age of people who have been tested positive for Covid-

19) and time in months (Figure 6C) indicate that clustering of 

Covid-19 cases were more prevalent in the elderly during the initial 

stages of the pandemic (April 2020 – May 2020). The chart also 

shows that there was a substantial dip in average age during 

September 2020 when education (especially universities) in Ohio 

were starting to re-open. From April 2021 onwards, there is a 

continuing decline in the average age of the cluster members 

indicating the disease was having more of any impact on younger 

populations, a situation locally addressed as being because of the 

Delta variant, and younger age cohorts remaining unvaccinated. 

 

 

Figure 6. Cluster global analysis. A) Seven-day daily rolling 

sum of cluster counts, B) Fourteen-day daily rolling average of 

cluster dispersion in meters, and C) monthly cluster average 

ages. 

3.2  Local Scale Cluster Analysis 

The real strength of GeoMEDD cluster detection lies in its ability 

to identify local disease emergence so that intercept teams can get 

ahead of the pattern rather than just mapping / reporting it [20]. 

Here we provide a few use cases of how the GeoMEDD cluster 

analysis has been applied to monitor the pandemic. 

3.2.1 Monitoring Congregated Facilities 

In the early phases of the pandemic congregated facilities such as 

nursing homes, care homes, and assisted living facilities as well as 

correctional institutions are particularly vulnerable for Covid-19 

due to both the advanced age and frequent chronic underlying 

health conditions of the residents and the movement of health care 

personnel among facilities in a region [25]. As a result, it was vital 

to monitor these for the first signs of any outbreaks. The spatial 

database can be leveraged for such monitoring by spatially joining 

cases and clusters to facilities based on different proximity risk 

distances. These automated daily reports about within and 

proximity disease presence around critical facilities can then be 

disseminated across local health organizations as well as hospitals. 

Such proximity-based analysis can be vital in taking precautionary 

measures before proximate disease spread causes an outbreak in the 

facility. As an example, the map on Figure 7 shows the cluster 

activity around a care home (indicated by the red star) as an 

outbreak develops. Figure 7A indicates that there was high cluster 

activity near the care home two weeks before the real outbreak 

(Figure 7B). These types of insights can provide an early warning 

to the care home facility administrators encouraging them to 

reevaluate the necessary preventive measures to reduce the 

likelihood of an outbreak occurring. 

 

 

Figure 7. Sentinel cluster activity around a care home facility 

(indicated by red pin) for the time period A) T1 to T1+21 days 

and B) T1+30 days to T1+38 days 

3.2.2 Generating custom warning messages based on cluster 

attributes 

Additional cluster attributes such as the age of each cluster member 

can be used to enhance the contextual characteristic of a cluster as 

well as to filter cluster detection as an early warning system. For 

example, the clusters shown on Figure 8 have been filtered based 

on three age categories including an average age between 6 and 17 

years (Figure 8A), 18 and 25 years (Figure 8B), and above 60 years 

(Figure 8C). Based on the different age categories automatic 

warnings can be generated within the GeoMEDD Clustering 

Environment and can be disseminated easily to the respective 

stakeholders (schools for 8A, and care homes for 8C). 

3.2.3 Generating daily reports based on cluster tracking 

While cluster tracking can be utilized for retrospective analysis to 

understand disease diffusion, a completely automated cluster 

tracking system backed by a spatial database offers the prospect for 
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information dissemination in near real-time. Figure 9 shows the 

flow diagram for a message dissemination pipeline in GeoMEDD. 

Here each cluster is passed through three different filters including 

the transition, dispersion, age filters, and based on the filter criteria 

a new message is generated. Such filter-based messages are 

aggregated to warn any interested parties such as local health 

departments or hospital first responders. Figure 9 shows three 

possible scenarios where a local actor (health department / school 

board / university) could be apprised of the situation developing in 

their proximity. The benefit of including the generalized areas of 

risk also allows for these local experts to contextualize the outputs 

with their own local knowledge, for example are the clusters over 

student housing, or a mixed age congregate housing tower? 

 

Figure 8. Cluster filtering based on age categories A) 6 to 17 

years (school students), the red marker represents a school, B) 

17 to 25 years (university students), the red marker represents 

a University, and C) above 60 years (senior citizens), the red 

marker represents a care home facility. 

 

Figure 9. Generating daily reports based on cluster tracking 

and cluster attributes. Messages for dissemination are 

generated based on the results from the different filters. 

3.2.4 Identifying cluster drivers at various spatial scales 

The GeoMEDD cluster parameters αmin and βmax can be varied to 

generate clusters at various levels of the hierarchy. The sentinel 

clusters (αmin = 2 and βmax = 100) might act as an early warning 

signal for a potential outbreak, and micro clusters (αmin = 5 and βmax 

= 500) might help identify surges spanning across multiple streets 

and buildings. However, when viewed together, the sentinel 

clusters nested within the micro clusters can help identify the key 

drivers, meaning where the majority of the larger cluster activity is 

found. This might be, for example, the hearth areas of this cluster.  

This same logic applies for all levels of the hierarchy; sentinel 

clusters identify drivers in the micro cluster layer, which in turn 

show the drivers for the neighborhood cluster, which in turn can be 

viewed as driver areas for a super cluster event. Figure 10 show an 

example of this multi cluster view with a combination of micro and 

sentinel clusters. The three sentinel clusters represent the key 

drivers for the larger micro cluster. Contextual attributes such as 

age can again be used to gain insights into why these are cluster 

drivers. 

 

 

Figure 10. Cluster analysis and monitoring at various spatial 

scales. Micro clusters (red polygon) and sentinel clusters 

(yellow polygons) when viewed together displays a hierarchical 

relationship with the sentinel cluster indicating the major 

micro cluster drivers. 

4  Discussion 

Disease surveillance analytics is an important tool to inform both 

the public health and health care systems about what is happening 

during an outbreak. While such analytics are important irrespective 

of the size of the event, what Covid-19 has shown us is that during 

a pandemic, with multiple waves and variants, and with the added 

complexity of vaccine status, having excellent and appropriate 

spatial analytics is vital [12, 15, 16, 20]. Clustering at coarser 

spatial scales such as counties [15], Zip Codes (or by ZCTA) [14], 

and even census tracts [16] are important to gauge overall disease 

trends and inform the public as to what is happening. For an 

incident command setting however, where intercept teams are 

mobilized, or hospital resources managed, these data and the 

associated analytics need to work in near real-time and at as 

granular a spatial scale as possible. GeoMEDD [20] has been 

developed as part of north east Ohio’s Covid-19 response to 

achieve those goals, support local hospitals, health departments and 

other aligned health groups such as federal qualified health centers. 

However, as the pandemic changes in space and time, it is 

imperative that GeoMEDD should be conceptually and 
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operationally flexible enough to adapt and evolve. In this paper, we 

have developed two new components for GeoMEDD including a 

fully automated clustering environment and a cluster tracking 

module. 

For large hospital systems and governmental health agencies, 

timely and actionable spatial insights are required. While clustering 

strategies such as GeoMEDD offer actionable insights, the various 

steps involved in data curation, geocoding, cluster generation, and 

finally information dissemination tend to be laborious and time 

consuming when performed manually. The clustering environment 

we have developed plays a major role in efficiently automating 

these manual tasks so that organizational resources can be focused 

on other critical tasks. We have given particular focus to 

developing a completely automated and thorough geocoding 

system, as the quality of any fine scale (at sub neighborhood, street 

or even building level) clustering methodology is heavily 

dependent on the quality of the underlying spatial data. For 

example, many current standard geocoders, when not able to 

geocode an address to point level, default to the next granular 

spatial scale such as street centroid, locality, or even to a postal 

(zip) code. Such artificial aggregation can generate spurious 

clusters, which can lead to the erroneous deployment of resources. 

Such geocoding nuances are carefully handled, while the three-

layer geocoding pipeline also improves the overall turnaround by 

caching in on the strengths of each geocoder. The advantage of the 

spatial database, which is the core component in the clustering 

environment, is manifold. Based on new surveillance requirements 

that arise due to the dynamic nature of the disease, new spatial 

queries can be developed and completely automated. The use case 

describing monitoring around a care home (Figure 7) provides an 

example of a completely automated spatial query. The spatial 

database is also an excellent tool for performing layer based 

analysis, such as ingesting different Social Vulnerability Indexes 

[26] so that cluster output can be contextualized by the underlying 

neighborhood risks. 

The cluster attributes, which can be explicitly (age) or implicitly 

(dispersion) derived, can also be used to classify cluster output or 

for filter-based cluster monitoring (Figure 8). For example, 

dispersion can be a good indicator of the characteristics of the 

underlying spatial structure of the cluster. Typically, a small 

dispersion value and large cluster count would indicate a potential 

outbreak at a congregated living facility such as a care home or an 

assisted living facility, while a large dispersion value indicates 

potential community spread. Along with supporting these types of 

near real-time surveillance and monitoring, the spatial database is 

also an indispensable resource for longitudinal and retrospective 

analysis such as tracking how the cluster landscape changes, output 

from which could eventually provide previously unavailable 

insights for a new family of diffusion models. For example, 

tracking clusters helps to understand the disease diffusion process 

across geographic scales (both global (Figure 6) and local). Cluster 

tracking can also be used to classify geographical areas based on 

cluster emergence (new clusters) and cluster merging. For example, 

an area could be classified as having severe community spread if 

there is frequent cluster merging in a short time frame. While 

currently we determine these patterns through exploratory analysis 

in near real-time, eventually we would need to theorize exactly 

what is happening so that effective trigger thresholds can be 

developed. 

Similarly, it might be that a combination of cluster deaths, cluster 

splits and reduction in cluster size might indicate a reduction in 

cluster intensity, or even a shortage in Covid-19 testing. Cluster 

tracking when used in conjunction with attribute based filtering, 

could be used to generate daily disease reports (Figure 9), the 

content of which could be tailored based on the interested parties 

(hospitals, county and city health organizations). For example, a 

hospital will be interested in knowing about cluster prevalence in 

their catchment area, while a county health department will be 

interested in knowing about how often cluster merges occur 

(indicating community spread). Of course, introducing such 

analytics would also require an associated training as what is being 

suggested here is the next step in operational health care analytics. 

As a clustering technique, GeoMEDD is similar to DBSCAN with 

an additional τ parameter for filtering data based on time. As with 

DBSCAN, the lack of statistical rigor is also an issue in GeoMEDD 

[27]. As GeoMEDD does not rely on denominator values 

(underlying population), there is no inherent normalization of the 

case data as compared to other techniques such as SaTScan. We 

emphasize that the purpose of GeoMEDD is not to replace 

traditional forms of disease cluster detection, but to enhance 

investigation in near real-time and in the context of health system 

operations to a dynamic situation. In this setting it is important to 

know when any new disease cluster is emerging rather than if it has 

reached a normalized threshold [20]. With the addition of cluster 

tracking module, GeoMEDD is comparable to the Modified Space–

Time DBSCAN (MST-DBSCAN) [28]. Compared to MST-

DBSCAN, GeoMEDD is implemented within a spatial database 

ecosystem, which is particularly helpful in identifying the cluster 

interaction patterns (external transitions) efficiently. Even though 

not implemented here, adding a time-based weight parameter along 

with the time filtering parameter would be beneficial if knowledge 

about a disease life cycle (incubation period, those infected, those 

recovered) is clear and accurate. 

Even though there are many benefits in developing a fully 

automated clustering environment and cluster tracking system, 

there are some inherent limitations too. Firstly, the cluster output is 

heavily dependent on the quality of the underlying geocoder. Even 

though we utilize a three-step geocoding process, the underlying 

geocoder is still vulnerable to geocoding nuances. For example, 

based on the underlying spatial structure, a care home could have 

more than one address (commonly seen with multiple complexes) 

which can affect that particular local cluster generation. Secondly, 

setting up an operational cluster environment and deploying a 

cluster tracking module are also a challenging task for many 

resource depleted health organizations, especially those lagging in 

IT support and infrastructure. To tackle this, we plan to develop a 

single application package containing all the required modules for 

building the cluster environment and the tracking module. While 

packaging a database such as PostgreSQL along with PostGIS is 

not a trivial task, we plan to develop a friendly standalone version 
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of the software with SpatiaLite (a spatial extension for the 

lightweight SQLite database) as the core spatial database system. 

Finally, clustering is also prone to dynamic structural changes, 

which can be problematic for cluster tracking. For example, a 

cluster that has died due to the recovery of a single member can be 

reinstated as a new cluster by the addition of a new member by the 

next day. Such fast transitions are difficult to capture, and we are 

planning to address this issue by devising various member 

weighting schemes. While we acknowledge these challenges, we 

are still confident in the current version of GeoMEDD due to its 

eighteen month (and ongoing) evaluation by those who are most in 

need of these data analytical insights. 

5  Conclusions 

As Covid-19 evolves in space and time, new automated spatial 

syndromic surveillance tools are required to keep apace of the 

changes. New approaches should improve on existing data analytic 

methods, but also be scalable for deployment in multiple settings, 

and be conceptually and operationally flexible enough to morph in 

to any new challenge. In this study, we have presented a method 

which has been at the heart of the COVID-19 geospatial response 

in northeast Ohio. More specifically we have developed a 

completely automated clustering environment, along with a cluster 

tracking module to capture the space time changes in Covid-19 

spread. In a unique twist, all cluster and architecture development, 

and all cluster and query outputs, have been evaluated in near real-

time by those who will use them on the front lines; health 

practitioners and managers. 
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Appendix 

A. Cluster Tracking Algorithm 

Algorithm 1 Cluster Tracking  

/* Run Clustering for every day and compares with existing clusters 

to determine the current state of a cluster*/ 

existingClusters = {} /* Data structure for storing clusters*/ 

clustId = 0 /*Counter for generating cluster ids*/ 

clustContinuing={}/*New Clusters that are continuations*/ 

probablyLiving = {}/*Clusters that might continue to exit*/ 

newToOldMapping = {}/*New cluster to old cluster relation */ 

minMatchThreshold = 50 /*Minimum percentage of members that 

should be similar for a new cluster to be a continuation of an 

existing cluster*/ 

minSplitThreshold = 10 /* Minimum percentage of members that 

should be similar for an existing cluster to be a part of a new cluster 

formed by splitting process*/ 

currentCases = getCurrentCases(previous=21) /*Get recent cases 

for previous n days*/ 

/*Run GeoMEDD clustering algorithm with currentCases as 

input*/ 

newClusterSet = 

runGeoMEDD(currentCases,minNeighb,maxDist) 

/*Store each cluster bounds to an rtree for fast intersection test*/ 

clustBounds=rtree(newClusterSet) 

for each existingClust in existingClusters 

    /*if the cluster status is not active continue*/ 

    if existingClust.status != ‘active’ 

        Continue 

    /*get new clusters that intersects with existing clusters*/ 

    matchClusts = clustBounds.intersects(existingClust.bounds) 

    /*if there is no intersecting cluster, then the existing cluster has    

died*/ 

    if matchClusts.size == 0 

        existingClust.status = ‘Dead’ 

    /*if there is a single match*/ 

    else if matchClusts.size == 1 

        /*Check if the members are similar up to threshold */ 

        sim=  

similarity(existingClust.members,matchClusts[0].members)             

        if sim < minMatchThreshold 

            /*since the clusters are not strongly similar we consider  the 

existing cluster to be dead*/ 

            existingClust.status = ‘Dead’ 

            Continue 

        else 

             /*The existing cluster is continuing to live or have 

merged*/ 

            probablyLiving[existingClust.id]= matchClusts[0].id 

            newToOldMapping[matchClusts[0].id]= existingClust.id 

        else 

            /*There are multiple matches. This could be a split*/ 

            localT = 0/*Local variable to accumulate thresholds*/  

            localMatchIds=[]/*for matching clusters*/ 

            for each newClusts in matchClusts 

                sim=similarity(existingClust.members, 

newClusts.members) 

                if sim > minSplitThreshold 

                    localT = localT+sim 

                    localMatchIds.add(newClusts.id) 

                /*If the accrued total is less than threshold, cluster is     

dead*/ 

                if localT < minMatchThreshold 

                    existingClust.status = ‘Dead’ 

                    Continue 

                else 

                    /*If there is only one valid match the cluster can be 

added to probably living set*/ 

                if localMatchIds.size==1 

                    probablyLiving[existingClust.id]= localMatchIds[0] 

                    newToOldMapping[localMatchIds[0]]= 

existingClust.id 

                else /*This is a pure split*/  

                    existingClust.status = ‘Split’ 

                 for each ids in localMatchIds 

                        newToOldMapping[ids]= existingClust.id 

/*Now for each probablyLiving cluster check if its continuation or 

a merge*/ 

for each pClusters in probablyLiving 

    /*If there is one to one relation between old and new, then it’s a   

continuation, and otherwise it’s a merge */ 

    if newToOldMapping[probablyLiving[pClusters]]==1 

        existingClust.status = ‘Active’ 

        clustContinuing[probablyLiving[pClusters]]=0 

   else 

       /*This is a merge. The old cluster has merged to a new cluster*/ 

       existingClust.status = ‘Merge’ 

/*Now add each new member to the existingCluster set*/ 

for each newClust in newClusterSet 

    /*If the cluster is continuation, don’t add to existing*/ 

    if newClust.id is not in clustContinuing 

        existingClusters[newClust.id]= newClust
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