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ABSTRACT
It has been well-established that human mobility has an insepa-
rable relationship with COVID-19 infections. As social-distancing
and stay-at-home orders lifted and data availability increased, our
knowledge on how human behaviors including mobility and close
interpersonal contacts associate with the pandemic progression also
needs to stay updated. In this paper, we examine the relationship of
COVID-19 daily transmissibility measured by the total confirmed
cases and the effective reproduction number (𝑅𝑡 ) with the two
indices that provide human behavior insights: Cuebiq Mobility
Index (CMI) and Cuebiq Contact Index (CCI). The correlations
between each index and COVID-19 infections are evaluated using
the Maximal Information Coefficient (MIC) which is powerful in
capturing complex relationships. Moreover, the study period is
segmented into three periods by Bayesian Change Point Detection
to examine temporal heterogeneity and the mainland US states are
grouped into three distinct clusters using the KShape clustering al-
gorithm to further examine spatial heterogeneity. The CCI and CMI
exhibited very different patterns and we found significant temporal
and spatial heterogeneities among the relationships between the
two indices and COVID-19 infection rate. Although humanmobility
has demonstrated high correlation with COVID-19 infection rate in
2020, close contacts became much more correlated with COVID-19
infection than mobility in 2021. However, states in the Plains and
Rocky Mountains area are exceptions to this observation. During
the first wave in 2020, it is also shown that mobility has a high
impact on states outside of Farwest and Southeast than those states
within that region.

CCS CONCEPTS
• Information systems→ Spatial-temporal systems;Data ana-
lytics; •Mathematics of computing→ Bayesian computation.
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time series analysis, clustering, human mobility, spatial epidemiol-
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1 INTRODUCTION
Continuing to develop our knowledge on how human behaviors
interact with the pandemic is critical for containment of the spread
of COVID-19 virus and preparing better for future respiratory infec-
tious diseases. It has been well-established that human behaviors
have an inseparable relationship with COVID-19 infection rate [2].
However, most of the works were done only for certain periods in
2020 and was focused solely on the relationship between human
mobility and COVID-19 infection [1, 14, 18, 40]. As social-distancing
and stay-at-home orders lifted and data availability increased, the
correlation between COVID-19 infections and human behaviors
should be examined in more aspects together with the story of con-
tinued pandemic in 2021 and beyond. Existing approaches mainly
look at human mobility through mobile device data from location-
based services or business insight companies and calculate move-
ment metrics (e.g., travel distance, number of trips or place visits,
and dwell time) for geographic units of interest by looking at
the origin and destination of user’s trips [3, 11, 21, 25]. However,
reduced mobility doesn’t necessarily ensure that people follow the
social (physical) distancing guidelines. Due to the mobile phone
GPS location horizontal error and uncertainty, such social (physical)
distancing patterns cannot be identified from the use of aggregated
movement metrics. But individual-level interpersonal close contacts
(i.e., spatiotemporal co-location patterns) can be estimated using
mobile device data or through digital contact tracing [41] and have
shown better association with the infection rates than the mobility
metrics [8]. The spatiotemporal variations of such realtionships are
still unknown though.

To fill such a research gap, in this paper, we aim to understand the
temporal and spatial heterogeneities among the complex non-linear
relationships between the two indices (mobility index and close
contact index) and COVID-19 infections. Since the assumptions for
linear regression models are extremely stringent, a lot of research
then focused on non-linear models to capture the relationships
between human behaviors and COVID-19 infections [43]. We will
assess the relationships using the Maximal Information Coefficient
(MIC) which is powerful in capturing non-linear relationships. This
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will also provide valuable insights for relevant agencies when mak-
ing decisions on future non-pharmaceutical interventions to a pan-
demic. The main contribution of this paper is providing an extended
timely summary of the correlation between human behaviors and
COVID-19 infections up to the end of 2021 and investigating the
temporal and spatial heterogeneities in these relationships from
looking at different phases of the COVID-19 pandemic and different
regions of the United States.

The remainder of the paper is organized as follows. Section 2
provides a literature review on related work. We then introduce
the data we used in this study in Section 3 and outline the detailed
methods including Bayesian Change Point Detection and KShape
clustering that are employed to examine temporal and spatial as-
pects of our data, and Maximal Information Coefficient in Section
4, respectively. Section 5 presents the experiments and results that
we conduct in the US. Finally, Section 6 summarizes this work and
shares our insights on future works.

2 RELATEDWORK
2.1 Sources of Human Mobility Data in

COVID-19 pandemic
For most of the studies that examine large-scale human mobility
patterns, the most widely used are mobile device data given its large
population coverage and low cost [15, 16, 36, 37]. SafeGraph (https:
//www.safegraph.com) and Google Mobility Reports (https://www.
google.com/covid19/mobility) are the twomost widely used sources
in the COVID-19 pandemic due to their wide region coverage and
open data policy to support research. Google Mobility Reports
has the advantage of the massive amount of Google Map users
and generate mobility insights from users’ Location History [27].
SafeGraph generates mobility insights by estimating foot traffic at
millions of points-of-interest in the US [3]. Others utilized public
transit data, survey data, and census data to study human mobility
patterns. In addition, index-based mobility measures also became
popular because there is no need to calculate mobility inflow and
outflow as an extra step and it’s easy to compare between states
or counties. The two widely used mobility indices were Tencent
Mobility Index and Baidu Mobility Index, especially during the
early stage of the pandemic. However, both indices only cover
mainland China [43]. Cuebiq Mobility Index and Descartes Lab
Mobility Index which cover the US were later employed by many
studies as indicators of mobility including the New York Times
[13, 19, 29]. In addition, some studies constructed their own index
such as Social Contact Index (SCI) and Social Distancing Index (SDI).
SCI is constructed by calculating the average number of users that
a user is co-located with during a specified time period [42]. SDI
looks at users’ daily number of personal trips and the percentage
of staying at home and out-of-county trips as indicators of social
distancing in a geographic area of interest. A high value of SDI
means that people are practicing social-distancing a lot while a
low value indicates that people are not practicing social-distancing
very well [30]. Overall, Cuebiq has the advantage that it is readily
available and it has interpersonal close contacts insights in addition
to the mobility insights.

2.2 Assessing Relationship between Human
Behaviors and COVID-19 Pandemic

Numerous studies have put efforts into assessing relationship be-
tween human behaviors and COVID-19 infections and have pointed
out a positive relationship between the increase of mobility and
the growth of infection rate unanimously [14, 21, 40, 42]. From the
modelling side, Xiong et al. used a simultaneous equations model
(SEM) with time-varying coefficients and demonstrated a dynamic
positive relationship between mobility inflow and new COVID-19
cases [40]. Kraemer et al. has shown that mobility could explain the
spread distribution of COVID-19 infection in China fairly well at
the early phases of COVID-19 onset adopting a generalized linear
regression (GLR) model [24]. Wu et al. applied the Geographically
Weighted Regression (GWR) and found static positive influence on
COVID-19 infections from factors such as population and age struc-
ture [39]. Hou et al. [18] developed a human mobility-augmented
stochastic SEIR Model for the intracounty modeling of COVID-19
infection and assessed the spatial heterogeneity of infections with
business foot-traffic, age, and race. However, all studies mentioned
above only modelled the relationships in 2020. Recently, Chen et
al. accounted for neighborhood-level demographic and mobility
differences to study different vaccine distribution strategies with
consideration of heterogeneous COVID-19 risks in the US [4].
Despite successful epidemic modelling, correlation is a straight-
forward way to assess the relationship between human behaviors
and COVID-19 infection rates that could provide timely insights.
Most initial correlation analysis done so far applied the Pearson
index, rank-sum test, and Kruskal-Wallis test with Dunn’s post hoc
analysis [42, 43]. Some also utilized the Spearman Ranked Corre-
lation Coefficient and the Kendall-Tau Ranked Correlation Index
[23, 30]. However, both of these correlation indices can only capture
linear or monotomic relationships while the relationships between
COVID-19 infection rates and human mobility & close contacts
are not exactly the case. Moreover, ranked correlation coefficients
is not necessarily applicable to assess the relationship between
human behaviors and COVID-19 infections if we look at the global
period as the global period time series can be viewed as different
intervals that in a form is close to grouped frequency distribution.
Then looking at pairs of two variables from different time intervals
may not be the best way to assess correlation. Cheng et al. applied
MIC to analyze the relationship between different categories of
mobility (i.e. park visits, retail, workplaces, transit stations) and
effective reproduction number and found close relationships among
them [6]. This study is also done only for the period of March to
September 2020 for regions in England.

3 DATA AND PREPROCESSING
The Cuebiq Mobility Index (CMI), Cuebiq Contact Index (CCI),
and their Year-Over-Year 𝑌𝑜𝑌 variations are collected from the
Cuebiq dashboards at the state level daily for the two years of 2020
and 2021. According to Cuebiq, "The CMI measures the median
aggregated movement (i.e distance traveled) by all devices in meters
in each state on a log 10 scale. The CCI measures the number of
devices with contact dividing by the number of devices seen at
a place. A close contact is determined by whether two or more
devices come within 50 feet of each other within a five minute time
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period" (https://help.cuebiq.com/hc/en-us/articles/360041285051-
Mobility-Insights-Mobility-Index-CMI). The mobility insights in-
dices are all calculated by Cuebiq using their first-party data.We use
the two indices as indicators for human mobility and close contacts
between people, respectively. The 𝑌𝑜𝑌 variation represents the
percentage of change compared to the average value of the previous
365 days. The 2020 data is calculated as:

𝐷2020 =
𝐷2021
𝑌𝑂𝑌 + 1

(1)

The US state-level COVID-19 infection data including cumulative
confirmed cases, hospitalized cases, and deaths are obtained from
the New York Times (https://github.com/nytimes/covid-19-data).
The daily confirmed cases are calculated as the difference between
the cumulative confirmed cases and any negative values are re-
placed as a 0. The period we examined is from April 2020 to the end
of 2021 as April 2020 is the first month with complete new cases
reported for the whole month but a lot of cases were unreported
or not tested in the US at the beginning of the pandemic (February
and March, 2022) [5]. We then estimate the Effective Reproduction
Number (𝑅𝑡 ) from daily confirmed cases as 𝑅𝑡 has been grounded
to be an indicator of the trend and spread of a pandemic compared
to Basic Reproduction Number 𝑅0. 𝑅𝑡 implies the average number
of secondary infections caused by an infected individual at time
t. Moreover, 𝑅𝑡 is a measure that change with time which adapts
to every stage of a pandemic while 𝑅0 is only a static measure,
which is not the best measure to determine the power of infection
of a pandemic as there are diseases with 𝑅0 < 1 that persisted and
diseases with 𝑅0 > 1 that vanished [6].

To compute the the Effective ReproductionNumber (𝑅𝑡 ), Bayesian
inference assumes a Gamma Distribution as the prior distribution
for 𝑅𝑡 . It is calculated as the expectation 𝐸 of the number of new in-
fections 𝐼𝑡 at time 𝑡 over the infectiousness of the infected individual
at time 𝑡 . The infectiousness of the infected individual at time 𝑡 is in
turn determined as the sum of infected individuals up until time t-1
weighted by their infectivity function𝑤𝑠 . The infectivity profile𝑤𝑠

is estimated by the serial interval defined as the time from the onset
of symptoms in an infected individual to the onset of symptoms
in a secondary infected individual [7]. To avoid 𝑅𝑡 being highly
variable, the smoothing window 𝜏 is chosen to be the default value
of 21 days in this analysis as it was demonstrated that 7 days lead
to too much fluctuations and exaggerate the presence of weekly
patterns which defeats the purpose of smoothing (according to the
implementation package at https://github.com/lo-hfk/epyestim). 𝑅𝑡
also has the advantage to assess the efficiency of control measures
and interventions as it reflects changes very quickly [7].

𝑅𝑡 =
𝐸 [𝐼𝑡 ]∑𝑡

𝑠=1 𝐼𝑡−𝑠𝑤𝑠

(2)

4 METHODS
4.1 Maximal Information Coefficient
The correlation analysis is broken down into temporal and spatial
aspects respectively as our purpose is to understand the spatial-
temporal heterogeneity among the relationships between the two
indices and COVID-19 infections, which is not widely studied yet
in the literature. For each period and each cluster of states, the

MIC is applied to measure the non-linear correlation between each
index and the COVID-19 infection rate including the daily cases and
𝑅𝑡 . MIC is chosen because it is much more powerful in capturing
complex non-linear relationships compared to other indices that
measure correlation like Spearman[33].

MIC assigns scores nearly to 1 for all noiseless functional as well
as non-functional relationships that are not constant; it assigns
scores close to 0 to independent relationships [34]. In addition
to the characteristics mentioned above, MIC has an outstanding
advantage of having both generality and equitability, meaning that
it could capture relationships that are not functional just as well
as functional relationships and it does not bias toward certain
types of functions at different noise levels [34]. Equitability is the
concept that the correlation assessment method should give similar
scores to relationships at similar noise levels regardless of the type
of the relationship (i.e. different functional relationships or even
non-functional relationships). And it was further shown that MIC
is more equitable than the Distance Correlation and Spearman
Correlation [33].

For calculating the MIC, let 𝐺 denote the x-by-y grid where the
two variables are scattered. The MIC looks at the highest mutual
information 𝐼 obtained from 𝐺 at any resolution and normalizes
𝐼𝐺 (𝑥,𝑦) from all resolutions. The MIC is taken as the maximum of
𝐼𝐺 (𝑥,𝑦) where {𝑥∗, 𝑦∗} is the optimal resolution that maximizes
normalized 𝐼𝐺 [33].

𝑀𝐼𝐶 = max
𝐼𝐺 (𝑥∗, 𝑦∗)

log2 min{𝑥,𝑦} (3)

4.2 Temporal Analysis with Bayesian Change
Point Detection

We applied the Bayesian change point detection approach, which is
a Bayesian framework for detecting signals in the probability of a
change point which suggests that the time series before and after it
are come from different distributions or the same distribution with
different parameters [12], to capture the temporal heterogeneity
of the COVID-19 spread [9, 22]. It is especially powerful due to its
flexibility with the number of change points and the positions of
them [28]. The input of the algorithm is the daily average COVID-19
cases across all states as observations 𝑦1, ... , 𝑦𝑛 where 𝑛 = 640 is
the number of data points (2020-04-01 to 2021-12-31) in our study.
Denote 𝑃𝑎:𝑏 as the probability that 𝑦𝑎 and 𝑦𝑏 are in the same period
(there is no change point between𝑦𝑎 and𝑦𝑏 ),𝑄𝑡 as the likelihood of
data after time t given a change point at t-1, 𝑃𝐶𝑃𝑖,𝑡 as the likelihood
that the 𝑖𝑡ℎ change point is at time t, and 𝑃𝑡 as the probability of a
change point of at time t which is the key output we need.

𝑄𝑡 = 𝑃 (𝑦𝑡 :𝑛 |𝑡 − 1 𝑖𝑠 𝑎 𝑐ℎ𝑎𝑛𝑔𝑒 𝑝𝑜𝑖𝑛𝑡) (4)

The algorithm examines two priors: i) the number of change
points 𝜏1 ...𝜏𝑚 and conditioning on their positions 𝑃 (𝜏𝑖 |𝜏𝑖+1); ii)
the point process that models the change points. Denote 𝑔(𝑡) as
the probability mass function for the time between two successive
points that specifies the point process, 𝐺 (𝑡) as the distribution
function of the distance between two successive points with 𝐺𝑡 =∑𝑡
𝑠=1 𝑔(𝑡). We can derive recursion for 𝑄𝑡 as follows.
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𝑄 (1) =
𝑛−1∑︁
𝑠=1

𝑃1:𝑠𝑄𝑠+1𝑔(𝑠) + 𝑃1:𝑛 (1 −𝐺 (𝑛 − 1)) (5)

𝑄 (𝑡) =
𝑛−1∑︁
𝑠=𝑡

𝑃𝑡 :𝑠𝑄𝑠+1𝑔(𝑠 + 1 − 𝑡) + 𝑃𝑡 :𝑛 (1 −𝐺 (𝑛 − 𝑡)) (6)
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Figure 1: Bayesian Change Point Detection Result on the
Average Daily COVID-19 Confirmed Cases of all States

We then simulate samples of change points from the posterior
distribution of the next change point given the previous change-
point at time 𝑡 denoted as 𝑃 (𝜏 |𝑦1:𝑛,𝑡 ) by simulating samples in the
data. After conditioning on the number of change points and their
positions, we can derive the likelihood of that the ith change point
at time 𝑡 . In this analysis, we assume constant prior for the change
points as we do not have prior information on where a change
point is more likely to occur. The constant prior used is the uniform
distribution on the length of the data. To obtain the probability of
a change point at time 𝑡 𝑃𝑡 from the likelihood 𝑃𝐶𝑃 , we have:

𝑃𝑡 =

𝑡∑︁
𝑖=1

𝑃𝐶𝑃𝑖 (7)

For more details of the algorithm, please see [12]. We also ac-
knowledge that there are other effective change point detection
algorithm (e.g., TS-CP2 via Contrastive Predictive Coding [10]). The
daily COVID-19 cases time series is segmented into three periods
by performing the Bayesian change point detection: 2020-06-14 to
2021-02-10, 2021-02-10 to 2021-06-23, and 2021-06-23 to 2021-11-25,
as shown in Figure 1. The top plot in Figure 1 shows the average
daily confirmed cases of COVID-19 cases of all states in the US and
the bottom plot shows the likelihood of a change point. In general,
tall and thin spikes indicate a change point with more confidence
and short and wide spikes indicate a possible change point with
more uncertainty [35]. The four change points we selected are based
on this characteristic. Looking at the three periods diagnosed, the
first period aligns well with the first wave in newly reported cases in

2020 [1, 32]; the second period corresponds to the downward trend
followed by a small wave of a surge in Spring 2021; the third period
corresponds to the peak surge in Fall of 2021. It is worth noting
that the period after 2021-11-25 has a huge spike of COVID-19
infections which aligns with the discovery of the Omicron variant
cases [17].
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Figure 2: The spatial distribution snapshots of the effective
reproduction number 𝑅𝑡 in the middle of each period for US
states

We also examined the snapshot distribution of 𝑅𝑡 for US states
in the middle of each period derived from the Bayesian Change
Point Detection to get a sense of the spatial-temporal differences,
as shown in Figure 2. The midpoints of each period derived are
2020-10-12, 2021-04-17, and 2021-09-08which are at the rising uphill
of the surge in Fall 2020, the small peak during the downward
trend in Spring 2021, and the peak during the second largest wave
since the pandemic in Fall 2021. Different geographic hotspots of
infections can be found on the maps for each period (Figure 2),
which is a motivation to perform spatial heterogeneity analysis in
the following section. For each period, we apply MIC to measure
the correlation between each index and COVID-19 daily cases
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that are smoothed using a seven-day rolling average to take into
account time delays. We also performed the same analysis on the
seven-day rolling average of 𝑅𝑡 which has been shown to be more
representative of the spread of the pandemic at the moment in time.

4.3 Spatial Analysis with KShape Clustering

To understand the spatial heterogeneity of COVID-19 infections
across states and the regional homogeneity, spatial clustering is
needed. KShape is a clustering algorithm specifically designed for
clustering time series as the clustering process is based on the shape
alignment. In particular, we chose KShape due to its characteristic
of maintaining Scaling Invariance (being able to recognize time
series’ similarity despite scales), Shift Invariance (being able to
recognize the similarity in time series despite a slight shift in phase),
and Complexity Invariance (being able to recognize the similarity
in time series when they have similar shape even if they have
different degrees of complexities) during shape similarity detection
of time series while performing the spatial clustering [31]. Hence,
all the time series are z-normalized before undergoing the KShape
clustering which is critical for maintaining the scaling invariance.
To maintain the Shift Invariance, the shape-based distance com-
pares time series similarity based on aligning the two time series
with shift 𝑤 that maximizes their cross-correlation 𝐶𝐶𝑤 . Since
cross-correlation captures the similarity between time series itself,
computing centroid is phrased as an optimization task that looks
for the centroid time series 𝑐𝑡 that maximizes its cross-correlation
with all other time series in the cluster. Figure 3 shows the centroids
of the Kshape clustering of state-level COVID-19 daily cases in the
US. Algorithm 1 below is an outline of the algorithm summarized
from [31].

𝑁𝐶𝐶𝑐 = ( 𝐶𝐶𝑤 (𝑡,𝐶𝐸𝑁 ( 𝑗))√︁
𝑅0 (𝑡, 𝑡) · 𝑅0 (𝐶𝐸𝑁 ( 𝑗),𝐶𝐸𝑁 ( 𝑗))

) (8)

𝑅0 (𝑎, 𝑏) =
𝑚∑︁
𝑖=1

𝑎𝑖 · 𝑏𝑖 (9)

In the Algorithm 1, Equation 10 calculates the centroid of cluster
j as the maximizer of 𝑁𝐶𝐶𝑐 with all time series in the cluster.
𝐶𝐸𝑁 ( 𝑗) denotes the current centroid time series for cluster 𝑗 . Let
𝐷 ( 𝑗) denote the current shape-based distance that the time series
𝑡 is deviated from the centroid of cluster j. Equation 11 calculates
the shape-based distance between time series 𝑡 and 𝐶𝐸𝑁 ( 𝑗). As
the coefficient normalization of cross correlation 𝑁𝐶𝐶𝑐 defined in
Equation 8 inherently measures the similarity between two time
series, one minus the maximum 𝑁𝐶𝐶𝑐 gives the minimum distance
between 𝑡 and 𝐶𝐸𝑁 ( 𝑗). In other words, 𝐷 ( 𝑗) is also a measure of
dissimilarity and we want to assign the time series 𝑡 to the cluster
with the smallest dissimilarity. The algorithm will not stop until
convergence, meaning the cluster membership𝐶𝑀 does not change
anymore or until the maximum number of iterations is reached.

The time series of daily COVID-19 cases for the Contiguous US
including the 48 mainland states andWashington D.C. are clustered
by KShape. The silhouette score of the z-normalized time series
is computed for K ranging from 2 to 10 and we selected 3 as the
optimal K with the largest silhouette score. As shown in Figure
4, the three clusters derived from Kshape largely correspond to

Algorithm 1 CM, CEN← 𝐾𝑆ℎ𝑎𝑝𝑒 (𝑋, 𝑘)
Input 𝑋 is an array of n time series each with length m; 𝑘 is an

integer that specifies the number of cluster
Output CM is an array of length n that specifies each time series’
cluster membership, CEN is an 𝑘 × 𝑛 array with k centroids of

length n
𝑖𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 ← 1
randomly assign clusters
while NOT converge or iteration<100 do
for each cluster j do

𝑋 ′ = []
for each time series t in X do
if t is in cluster j then

𝑋 ′.𝑎𝑝𝑝𝑒𝑛𝑑 (𝑡)
end if

𝐶𝐸𝑁 ( 𝑗) = arg max
𝑐𝑡

∑︁
𝑥𝑖 ∈𝑋 ′

𝑁𝐶𝐶𝑐 (𝑥𝑖 , 𝑐𝑡)2 (10)

end for
end for
for each time series t in X do

for each cluster j do

𝐷 ( 𝑗) = 1 −max
𝑤

𝑁𝐶𝐶𝑐 (𝑡,𝐶𝐸𝑁 ( 𝑗)) (11)

end for
assign t to the cluster with the minimum D
update CM

end for
iteration+=1

end while

the eight economic regions in the US [26]: cluster 0 made of New
England, Mideast, and Midwest; cluster 1 largely made up of Plains,
Rocky Mountains, and Southwest; cluster 2 made up of mostly
Far West and Southeast. Similarly, for each cluster of states, we
apply MIC to measure the correlation between mobility index/close
contact index and COVID-19 daily cases and 𝑅𝑡 , respectively. Both
the daily cases and 𝑅𝑡 are smoothed using the seven-day rolling
average to reduce noise due to the delay of reporting or other data
issues [18, 32, 40].

We also further examined the spatial auto-correlation of the
distribution MIC values for both indices and COVID-19 infections
using the Global Moran’s I index. It evaluates both the attribute
location and attribute values at the same time. The Global Moran’s
I Index has range from 1 to -1 where a value of 0 indicates perfect
spatial randomness, a value of 1 means perfect positive spatial
auto-correlation and a value of -1 suggests perfect negative spatial
auto-correlation [26]. A high value indicates a clustered pattern
while a low value indicates a dispersed pattern. Let𝑤𝑖, 𝑗 represent
the i-by-j matrix of spatial weight between attribute 𝑥𝑖 and 𝑥 𝑗 with
all diagonal values𝑤𝑖,𝑖, being 0; let𝑛 be the total number of features;
let 𝑧𝑖 denote the deviation of the ith attribute from its mean; let𝑊
denote the summation of all spatial weights; Using the geographic
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Figure 4: The K Shape clustering result of US states

adjacency rule (sharing state boundary) in our study, the Global
Moran’s I Statistic is calculated as below:

𝐼 =
𝑛

𝑊

∑𝑛
𝑖=1

∑𝑛
𝑗=1 𝑧𝑖𝑧 𝑗𝑤𝑖, 𝑗∑𝑛
𝑖=1 𝑧

2
𝑖

(12)

𝑊 =

𝑛∑︁
𝑖=1

𝑛∑︁
𝑗=1

𝑤𝑖, 𝑗 (13)

𝑧𝑖 = 𝑥𝑖 − 𝑋 (14)

5 RESULTS
5.1 Temporal Heterogeneity
The experiment result using the abovementioned datasets in the US
has shown significant temporal and spatial heterogeneities among
the associations between the two indices (CMI and CCI) and the
COVID-19 infections. As shown in Figure 5, in general, the positive
correlation between both indices and 𝑅𝑡 continues to grow as the
pandemic progresses. This aligns with our intuition that at the
beginning of the pandemic, the infected population was too small
for mobility and close contacts to be highly correlated with the
COVID-19 infection rate. In addition, with the stay-at-home and
social-distancing orders, human mobility was at its lowest in March
and April and did not see a rebound in mobility until May and June
after partial reopening in 18 states on May 1st, 2020 [25, 29, 40]. Our
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Figure 5: The MIC correlation between mobility and contact
index with 𝑅𝑡 for each time period

observation that Summer 2020 has the lowest MIC correlation (0.228
between CCI and 𝑅𝑡 and 0.236 between CMI and 𝑅𝑡 ) of all periods
examined align with the knowledge that human mobility was at a
rather idle and beginning to rebound phase during Summer 2020
[13]. For each period, the correlations are much higher than the
global period (i.e. 2020-04-01 to 2021-12-31). This also demonstrated
that it’s critical to examine the role of human behaviors in the
pandemic at different stages with consideration of the temporal
heterogeneity. The first period (2020-06-14 to 2021-02-09) seems to
be the time interval when the pandemic is most serious while the
second period (2021-02-10 to 2021-06-22) seems to be a winding-
down period as the first period has the highest average number of
daily confirmed cases of all states as high as 6080 and the second
period is in general a downward trend as shown in Figure 1 if we
disregard the Omicron period after 2021-11-25.

From the temporal perspective, the average values of CCI and
CMI exhibited very different patterns from April 2020 to the end
of 2021 as shown in Figure 6. Close contacts and mobility are both
rebounding prior to the first change point (2020-06-14) we detected.
Stating from Summer 2020, human mobility level has remained at
the same level with CMI values staying around 3.9 while the level
of close contacts slowly rises during Spring 2021. But the level of
close contacts had a drastic increase in Mid August and reached
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Figure 6: The Average CCI and CMI values of all states
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Figure 7: The MIC correlation between mobility and contact
index with daily COVID-19 cases for each time period

an unprecedented level in Fall 2021 which matches the second
peak in COVID-19 cases in Fall 2021. This leads to the temporal
heterogeneity in the relationships between COVID-19 infections
and the two indices. The CMI is much more correlated with 𝑅𝑡
compared to CCI in 2020 as demonstrated in Figure 5. However,
when it comes to the Fall surge in 2021, the CCI is much strongly
correlated with 𝑅𝑡 . This suggests that travelling is an important
factor that contribute to infections during the first wave but close
contacts between people have more impact during the Fall peak
in COVID-19 cases. This pattern would not have been visible if
we look at the global period only. This matches our knowledge
that as vaccination rates went up and mask requirement, human
mobility would not be as influential as close contacts in terms of
contributing to COVID-19 infections [8, 20]. Looking at the MIC
correlation between both indices and COVID-19 daily cases in
Figure 7, the temporal heterogeneity is in general smaller between
each period in time. The distribution of MIC values for the daily
COVID-19 cases are also in general higher than the MIC values of
𝑅𝑡 . But it still showed a similar pattern as the correlation between
the two indices and 𝑅𝑡 .

5.2 Spatial Heterogeneity
From the spatial perspective, the spatial heterogeneity which can
lead to substantial local and regional variations in COVID-19 timing
and severity [18, 38] is already visible from looking at the centroids
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Figure 8: The MIC correlation between each index with 𝑅𝑡
for each cluster

of COVID-19 infection rates in Figure 3. States in cluster 1 are
impacted by the first peak in Fall 2020muchmore than all the surges
coming afterwards. On the other hand, states in cluster 2 has a much
more visible small surge during the downward trend in Spring 2021
and an incredibly sharp increase during the Omicron period at the
end of 2021. States in cluster 0 experienced a rather similar impact
from each surge of COVID-19. The values of centroids can not be
used for comparison of severity of infections between clusters as
each state’s time series are z-normalized toward its own mean and
the centroids are extracted in a shape-based manner. The centroids
are only meaningful in understanding the overall trend and the
impact of each surge on all states within a cluster.

Figure 2 shows the spatial distribution of 𝑅𝑡 in US states as
a snapshot at the middle of each period we examined. The New
England, Mideast, and Midwest regions were shown to be a rather
homogeneous area with similar pandemic situation with smaller 𝑅𝑡
values than the rest of the states looking at the snapshot from Spring
2021. This group of states actually aligns very well with cluster 2
(in green) we derived from the KShape Clustering result in Figure 4.
It’s also noticeable that Southeast and some Southwest states have
similar 𝑅𝑡 values smaller than the rest of the states during Fall 2021.
This observation also matches with the cluster 0 (in blue) delineated
from the KShape Clustering. Another interesting observation is that
Alabama has a significantly higher 𝑅𝑡 value during the Summer-
Winter 2020 period but later demonstrated a much smaller 𝑅𝑡
value in Spring 2021. This may be due to outstanding policies that
successfully contained COVID-19 spread at that time.
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Figure 9: The MIC correlation between each index with daily
COVID-19 cases for each cluster

Looking at the MIC correlation in Figure 8, although mobility
was highly associated with COVID-19 infection rates 𝑅𝑡 during the
first two periods compared to close contacts, there is noticeable
spatial heterogeneity within it. On the mobility side, it has a smaller
impact on states in cluster 0 (i.e. Far West and Southeast) compared
to states in the other two clusters. Moreover, states in cluster 2
(New England, Mideast, and Midwest region) is the only cluster
that experienced a decrease in the correlation between mobility
and COVID-19 infection. In terms of close contact, the trend of the
association with 𝑅𝑡 is similar, showing a steady upward trend in
each cluster of states. However, states in cluster 2 (New England,
Mideast, and Midwest areas) saw a bump in the correlation between
close contacts and COVID-19 infections as early as Spring 2021
while other states did not see this bump until Summer 2021. The
difference inmedianMIC correlation values for states in cluster 2 (in
green) between Spring 2021 (2021-02-10 to 2021-06-23) and Summer
2020 (2020-06-14 to 2021-02-10) is as high as 0.28 while the increase
in MIC correlation values for the other two clusters were only 0.15
and 0.11. When it comes to Summer 2021, the increase in median
MIC values from the previous period for cluster 0 and 1 reached 0.3
and 0.22, respectively. Although we know the correlation between
close contacts and 𝑅𝑡 exceeded the correlation between human
mobility and 𝑅𝑡 in fall 2021, we can see that it’s mostly due to the
increasing correlation with close contacts in states in cluster 0 and
2. States in cluster 1’s (Plains, Rocky Mountains, and Southwest)
correlation between 𝑅𝑡 and close contacts actually never exceeded
that with mobility. This observation may be related with the fact

that the population density for states in cluster 1 are the lowest
region in the US. Even so, our result still showed a noticeable
increase in the MIC correlation between close contacts and COVID-
19 infections in fall 2021 for states in cluster 1 (in orange).

On the other hand, when it comes to the MIC correlation be-
tween the two indices and daily COVID-19 cases as shown in
Figure 9, it has also shown a rather similar pattern with the MIC
correlation with 𝑅𝑡 . Similarly, the MIC values for daily cases are
in general much higher than that for 𝑅𝑡 . Looking at the global
spatial auto-correlation analysis results in Table 1, we have all
positive values for each period’s MIC correlation values, indicating
neighboring states tend to have similar values of MIC correlation
as well. The MIC correlation for both indices with 𝑅𝑡 realized the
highest spatial dependency at different periods. The correlation
between CCI and 𝑅𝑡 showed the highest spatial dependency during
Spring 2021 (Moran’s I: 0.561) while the correlation between CMI
and 𝑅𝑡 exhibited the highest spatial dependency during Summer
2020 (Moran’s I: 0.675). The spatial dependency between human
mobility and 𝑅𝑡 is slowly becoming weaker over time.

Table 1: Global Moran’s I index of the MIC values in the US
for each phase of the pandemic

Spatial Auto-Correlation (by Moran’s I)
Time Period CCI & 𝑅𝑡 CMI & 𝑅𝑡

2020-06-14 to 2021-02-09 0.358 0.675
2021-02-10 to 2021-06-22 0.561 0.410
2021-06-23 to 2021-11-23 0.258 0.376
Global Period 0.235 0.266

6 CONCLUSION
In this study, we looked at the non-linear correlations between
COVID-19 infections and human mobility as well as close con-
tacts and revealed significant spatiotemporal heterogeneities. We
reviewed effective analytical methods that examine spatial and
temporal characteristics of the COVID-19 infection in the US. Specif-
ically, we adopted a Bayesian inference framework to determine
a meaningful segmentation of the pandemic into rather indepen-
dent time periods. We applied a time series specific shape-based
clustering algorithm (KShape) to group states that experience simi-
lar pandemic situations into one cluster. To capture the complex
relationships, we exploited the Maximal Information Coefficient
to measure correlations. Our results showed that close contacts
between individuals starts to play a more influential role compared
to mobility as the pandemic progresses into 2021. However, states in
the Plains, Rocky Mountains, and Southwest regions never saw the
correlation of close contacts exceeding mobility. We also found
that the MIC correlation values are in general higher for both
indices (CMI and CCI) with daily COVID-19 cases and has less
heterogeneity than with Effective Reproduction Number 𝑅𝑡 . The
spatial dependency for the correlation between close contacts and
𝑅𝑡 and the correlation between mobility and 𝑅𝑡 each reached the
maximum during Spring 2021 and Summer 2020 respectively.

Our results demonstrated the value of mobile device location big
data and the importance of spatiotemporal heterogeneity of human



SpatialEpi ’22, November 1, 2022, Seattle, WA, USA

behaviors in understanding the spread of the virus. Understanding
the spatiotemporal heterogeneity in how human behaviors cor-
relates with the pandemic progression is critical for government
officials to make decisions and plan ahead Non-Pharmaceutical
Interventions (NPIs) as of when to lift travel restrictions, when to
impose loose or strict social distancing order, and for which regions,
especially as the pandemic continues to develop and resurge, which
essentially require coordination efforts [36]. With the enrichment
of spatial-temporal data, our work provided a timely summary of
the pandemic situation since the beginning of the pandemic. A
key contribution of this study is to fill the gap of measuring the
complex relationships between the pandemic spread and human
behaviors all the way up to the end of 2021. We have investigated
human behaviors from both a human mobility perspective and a
close contacts perspective. Some further research directions include
advancing the correlation analysis to higher geographic resolutions
such as county or census tracts and investigate any changed or
hidden behaviors at county or census tract level.
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