
Using mobile network data to color epidemic risk maps
Elisa Cabana

elisa.cabana@imdea.org
IMDEA Networks Institute

Madrid, Spain

Andra Lutu
andra.lutu@telefonica.com

Telefonica Research
Barcelona, Spain

Enrique Frias-Martinez
enrique.frias@ucjc.edu

Universidad Camilo Jose Cela
Madrid, Spain

Nikolaos Laoutaris
nikolaos.laoutaris@imdea.org
IMDEA Networks Institute

Madrid, Spain

ABSTRACT
In this paper we propose a method for using mobile network data
to detect potential COVID-19 hospitalizations and derive corre-
sponding epidemic risk maps. We apply our methods to a dataset
from more than 2 million cellphones, collected over the months of
March and April in 2020 by a British mobile network provider. The
method consists of different algorithms, including detection, filter-
ing, validation and fine-tuning. The approach detected over 2,800
potentially hospitalized individuals, yielding a 98.6% agreement
with released public records of patients admitted to NHS hospitals.
Analyzing the mobility pattern of these individuals prior to their
potential hospitalization, we present a series of risk maps. Com-
pared with census-based maps, our risk maps indicate that the areas
of highest risk are not necessarily the most densely populated ones.
We also show that the areas of highest risk may change from day
to day. Finally, we observe that hospitalized individuals tended to
have a higher average mobility than non-hospitalized ones. Overall,
we conclude that the rich spatio-temporal information extracted
from mobile network data may benefit both the mobile-based tech-
nologies and the policies that are being developed against existing
and future epidemics.

CCS CONCEPTS
• Networks → Mobile networks; • Computing methodolo-
gies→Model development and analysis; • General and ref-
erence→ Cross-computing tools and techniques;Measure-
ment; Evaluation; Estimation; Validation.
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1 INTRODUCTION
Digital footprints are the records and traces we leave behind us
as we use mobiles and the Internet. They often empower tools of
significant societal importance, e.g., behavioral models in mental
health, civil engineering planning, predicting crime rates, track-
ing contamination, diseases or viruses [1, 18, 28, 40]. Amidst the
COVID-19 epidemic, the necessity to unleash the full potential of
digital tools and data-enabled research in the field of health becomes
more urgent than ever. From the very first stages of the pandemic
many tools have emerged to help with understanding and com-
bating it. One of the most important tools are the risk maps, since
they visualise the disease distribution and intensity. Coloring areas
according to a risk measures is useful for first responders, decision
makers, for evaluating the stress on the healthcare system [5], and
for decisions making at the level of the individual [49].

1.1 Related work
There are multiple ways to create a risk map, e.g., using census
data [15, 47], or cases reported by public health institutions. An-
other approach based on online surveys has recently been used in
several countries [2, 20, 37, 38]. The survey-based methods have
the main objective of avoiding the problems that different federal
governments or countries had, at least on the initial phases, when
evaluating the reach of the epidemic because of limited resources
or tests available. Hence, it provides an alternative way of eval-
uating the number of infections while preserving the privacy of
the responses, but it requires a reasonable number of responses
which is not always easy to get. The maps based on these high-level
statistics may also have accuracy problems because the geographic
scope is large, usually country, region or sovereignty [27]. Further-
more, regarding the time dimension, with static maps we could not
distinguish whether a certain location is more dangerous during
day versus night, or weekday versus weekend.

Static maps are usually based on traditional epidemic models
that assume mobility and contact events occur at random. However,
reality is more complex as stated by the new type of epidemiology:
the digital epidemiology era [44], which recognizes the importance
of population structure and patterns of interactions and mobility,
as elements that can substantially alter the likelihood of disease
propagation. In fact, thanks to the ubiquitous cellular devices, the
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study of human mobility has gained significant attention because
of the high penetration of cellphones and the low collection cost.
To capture this, mobile network data can be effectively exploited to
improve our understanding of human mobility dynamics and all
social activities and phenomena driven by it [4, 7] including urban
planning [30], emergency response [22], and epidemics control
[29, 50]. In the latter case, mobile network data has helped to study
the risk of infectious diseases contagion [8, 43], the spatial spread
of cholera [3], to predict the risk of viruses such as the Zika, malaria
or the dengue fever [32, 41, 48, 51], and COVID-19 [17, 19, 26].

An alternative tool is called contact tracing [9, 33], a technique
that uses near-field communications and/or GPS at a micro-scale,
to study not only the location of a possible interaction that could
cause an individual infection or an outbreak, but also the moment
in which it occurred. Recent applications based on contact tracing
have been developed for the study of the COVID-19 spread, such
as the one from Google and Apple [13]. Contact tracing has the
advantage of having an increased accuracy since it can identify
the interaction at the level of a few meters of distance. However,
it suffers from some drawbacks as well, e.g. it requires a large
percentage of adoption by the population and it involves serious
privacy concerns [6].

1.2 Our Contributions
In this paper, we propose to combine the advantages of the men-
tioned approaches without suffering from their drawbacks. To
achieve this, we developed a method for computing risk maps based
on mobile network data that provides detailed spatio-temporal in-
formation about millions of cellphones at various scales.

Fig. 1 depicts the three phases of our methodology. In the first
phase, we use mobile network data for detecting potential COVID-
19 hospitalizations with the detection algorithm that looks for indi-
viduals whose phone started appearing during the night in the same
area or very close to a hospital that received COVID-19 patients.
The result is a set of “pre-detected as hospitalized” individuals.
Since false positives and false negatives can occur, we also propose
a filtering algorithm in the first phase of the research approach.

The second phase consists of the validation and fine-tuning
study based on data released by the National Health Service (NHS),
which contains reported COVID-19 hospitalization counts at the
level of NHS Trusts. The parameters of the detection and filtering
algorithms are fine-tuned towards the combination that gives the
best performance with the validation data across different settings.

The third phase starts when the final set of potentially COVID-19
hospitalized individuals is obtained. Then, for each person detected
as hospitalized, we study their mobility pattern during the two
weeks prior to their day of hospitalization. Based on this, we obtain
detailed dynamic risk maps that change through time and thus
capture more accurately the distribution, evolution and intensity
of the disease.

1.3 Our results
Applying our methodology on a large dataset of more than 2 mil-
lion cellphones in London, UK, we have identified 2,866 potentially
hospitalized COVID-19 cases that compare favorably with released
public records that report 11,177 patients admitted to hospitals in

London, in the same time frame, which scaled by the 26% mobile
networks population coverage is 2,906; thereby yielding a 98.6%
agreement with our result. In the validation and fine-tuning study,
the parameter configuration that consistently matches the valida-
tion data across different settings, while maintaining a high value
of correlation between the estimations and the validation data is
the cell-tower granularity, with a surrounding area of 750m around
the hospitals to choose the cell-towers. The resulting minimum
number of consecutive nights that an individual must have spent at
the hospital in order to be considered as hospitalized is 4. Analyzing
the mobility patterns of the final set of potentially hospitalized indi-
viduals, during the two weeks prior to their day of hospitalization,
we present a series of risk maps, which show that the multidimen-
sional characteristic of the risk of an area is better reflected when
considering spatio-temporal information, as opposed to static data.

1.4 Advantages
The proposed technique has several advantages, for example, (i)
it does not require user involvement to collect the data. In fact,
the data we use are readily available at various telecommunication
companies that use them for operational and other purposes. (ii)
Moreover, because this data has a granularity of a base-station an-
tenna or a postcode, they are less privacy-invasive than reading
GPS coordinates or near-field contacts of a few meters. Although
it is true that mobile network data includes personal information,
the fact is that such data are anonymized when used in analytic
studies as has been done by many previous works [31], and is also
our case. (iii) Furthermore, mobile network data usually contains
information about millions of customers, which is an advantage
compared to other alternatives such as surveys. (iv) Finally, this
proposal allows to have a much better spatial granularity than high-
level statistics techniques. We can model mobility using real data
in the range of a few hundred meters versus several kilometer gran-
ularity extracted from static data, such as census data or infections
reported by public health. Our few hundred meters granularity is
not enough for extracting contagion probabilities as the contact
tracing apps can do, but it is precise enough to detect areas where a
high number of positive patients move during different times of the
day. Such detailed spatio-temporal characterization of risk cannot
be extracted without mobility data.

The paper is organized as follows. Section 2 describes the data
used in this research study. Section 3 describes the algorithm for de-
tecting COVID-19 potential hospitalizations from mobile network
data, and the parameters involved. Section 4 describes the valida-
tion study to test the performance of the proposed approach under
different settings and the fine-tuning of the parameters. In Section
5, the algorithm for obtaining risk maps based on the mobility data
of the potentially hospitalized individuals, is presented, together
with the analysis of the results. Section 6 provides a discussion
about the ethical implications, the limitations, and the relevance
of the proposed approach for innovative uses of network data be-
yond communication and real-world impact. Our conclusions are
presented in Section 7 together with a description of our ongoing
and future work for extending our method.
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Figure 1: Overview of our research approach.

2 DATA
The data available for this study covers the region of Greater Lon-
don, United Kingdom. This area has 8.9 millions (2019) inhabitants
and spans 1579 square km [16]. In 2019, 95% of the population had
a mobile phone of which the vast majority are smartphones [46].
The latter is relevant as the more people connect to the network,
the more events are generated and thus the more data points we
have per inhabitant. This leads to better mobile network data.

The purpose of a cellular network is to offer mobile communica-
tion to subscribers of the system. In order to do this, their location
in the network is used to assign them to the most appropriate radio
base station. This is done using signalling data. With knowledge of
the network structure, this data can be transformed to a position of
the subscriber. In this paper we used this data to infer the mobility
of a set of subscribers through multiple points in time.

The data analyzed in this paper contains the GDPR-compliant
and anonymized information of more than 2 million users collected
over March and April in 2020, by a British mobile network provider,
whose population coverage is approximately of 26%. In our par-
ticular case, the records consist of the aggregated user’s activity
for each night from 00:00h to 08:00h. For each individual we have
a date stamp, representing each night. The dataset also contains
the top cell-tower from the network, which corresponds to the
cell-tower with higher usage time, and the top postcode in which
the top cell-tower is included. Finally, it also contains the aggre-
gated duration of the connection events, their home postcode and
a one-way hashed id created by the networks provider. Geographic
information about the top cell-tower (i.e., their latitude and lon-
gitude) was also provided, which in combination with the other
features, enable us to study the mobility of individuals at various
time frames. The longitudinal aspect of the records is one of the
main advantages of mobile network data, since it allows to filter
data, and resolve false positives, as we will show.

For the validation and fine-tuning study, we also used a dataset
that contains information about the number of hospitalizations
reported daily from the start of the epidemic (see [11]). This data
is collected on a daily basis and at the level of NHS Trust. More
granular information at the level of individual hospitals was not

available. In the third phase of the research study we will show
how to obtain risk maps. To analyze its results and compare with a
baseline, census data from the Office for National Statistics (ONS)
in UK, was also used [12]. The UK Census is undertaken every 10
years, with the most recent being on March 27th, 2011. This data
provides us with crucial information about the population.

3 DETECTING HOSPITALIZATIONS FROM
MOBILE NETWORK DATA

In this section we describe how to exploit mobile network data for
detecting potential COVID-19 hospitalizations.

3.1 Formulation
Consider the population of cellphone owners Ω, and a sample
𝑆 = {𝑠1, 𝑠2, ..., 𝑠𝑛} ∈ Ω. Let us denote as 𝐷𝑆 the mobile network
signalling dataset described in Section 2 containing information
for each individual 𝑠𝑖 ∈ 𝑆 , 𝑖 = 1, ..., 𝑛. Recall that 𝐷𝑆 contains
the individual’s home location ℎ𝑖 , which we have approximated
following the methodology in [25]. The dataset 𝐷𝑆 also contains
daily spatio-temporal information for each individual based on their
cellphone activity, such as their top location at night (from 00:00h
to 08:00h), i.e., the location in which the person spent most of the
time in that period: 𝑙𝑖 , and the amount of time spent in that location:
𝑡𝑖 .

3.2 Detection algorithm
The objective of the detection algorithm is to perform a binary clas-
sification to decide whether each individual in 𝑆 , can be considered
as hospitalized because of COVID-19 or not, by inspecting if their
mobile phone appears at night at the same location or near to a
hospital admitting COVID-19 patients.

Table 1 shows the parameters involved in the algorithms. One
of these parameters is the granularity of the locations, i.e. the cat-
egorical parameter 𝜑 which takes values 𝜑 = {𝑃,𝑇 } depending if
the postcode or the cell-tower granularity is chosen, respectively.
Therefore, for a fixed individual 𝑠𝑖 , both the home location ℎ (𝜑 )

𝑖
and

the top location 𝑙 (𝜑 )
𝑖

at night, depend on the two possible levels of
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granularity 𝜑 . In the case of postcodes (𝜑 = 𝑃 ) the smallest granu-
larity is known as “postcode unit". In the case of cell-towers (𝜑 = 𝑇 ),
it refers to the antenna towers that a user’s mobile phone connects
to, which, in general, are more granular than the postcodes.

Table 1: Parameters involved in the algorithms.

Concept Notation Values Meaning

Location 𝜑 𝑃 Postcode
granularity 𝑇 Cell-tower

Cell-tower 𝑟 0.5 500 m
ratio 0.75 750 m

1.0 1000 m

Temporal 𝜂 ≥ 1 Number of
granularity consecutive nights

A set of 74 hospitals in London, admitting COVID-19 patients,
was constructed using the information provided in [35]. For each
hospital, their location depends on the granularity 𝜑 . In the case
of postcode level, the location of a hospital is a single value, i.e.,
the postcode in which that hospital is located. In the case of cell-
towers, it is a list of surrounding cell-towers instead of just one,
because hospitals are large buildings and individuals inside may
connect and disconnect to the several antennas around them, during
a certain amount of time. For this purpose, different ratios 𝑟 around
the center of the building are considered, namely 500 meters, 750
meters and 1 kilometer. Now, let us define as 𝐿 (𝜑,𝑟 ) the complete list
of postcodes or cell-towers, depending on the value of 𝜑 , associated
to any hospital.

The idea is to cross the information about the individuals’ loca-
tion and activity at night, with hospital locations, and select those
individuals that appear at night at a postcode in which a hospital
is located, or those connecting to a cell-tower that belongs to the
list of towers of some hospital. This could then be used as an in-
dication that an individual may have been hospitalized. Note that
this method is generic and configurable, since other criteria could
be used, such as home confinement detection instead of hospital-
izations. Our approach would probably be more relevant for the
initial stages of pandemics, but we are currently studying alterna-
tive configurations as described in Section 7.

3.3 Filtering algorithm
The proposed approach can lead to false positives (people detected
as hospitalized incorrectly) as well as false negatives (hospitalized
people not detected by the approach). Therefore, we formally de-
fined a set of filters to reduce these rates in Table 2.

These filters are shown as conditions in the formulation of the
detection and filtering algorithm 1, but let us describe them in
detail first and explain how they relate to the false positive or false
negative rates. An example of possible false positives could be those
individuals that appear at night in the marked locations because
they just live in that area, i.e. the 𝑠𝑖 for which their home location
is in the list of hospital locations: ℎ (𝜑 )

𝑖
∈ 𝐿 (𝜑,𝑟 ) . Therefore, we set

a condition in the algorithm not to include them. We refer to this
condition as the “Home Filter” (see Table 2). Of course, the opposite

Table 2: Formal notation of the filters applied in the algo-
rithm.

Name Filter condition Reduction benefit

Home Filter ℎ
(𝜑 )
𝑖

∉ 𝐿
(𝜑,𝑟 )
𝜏 𝑗 False Positives

Work Filter 𝑙
(𝜑 )
𝑖

∈ 𝐿
(𝜑,𝑟 )
𝜏 𝑗 for 𝜂 nights False Positives

s.t. 𝜂0 + 𝜂 = 𝜂𝑙𝑎𝑠𝑡

can also happen (false negatives), because theremight be individuals
that live near a hospital and also got sick and hospitalized, but since
there is no possible way to detect them, we decided to reduce the
false positive rate instead.

Another possibility is those that appear at night at the hospital,
i.e. their top location at night is in the list of hospital locations:
𝑙
(𝜑 )
𝑖

∈ 𝐿 (𝜑,𝑟 ) , but only because they are working there, like nurses,
doctors, security guards, etc. It is very common for most workers
to show up at the hospital during the night, and even to appear for
several consecutive nights (due to night shifts). An individual that
appears to be switching location from one night to the other, and
thereby exhibiting multiple home-hospital-home-hospital transi-
tions, very rarely will be hospitalized because COVID-19 hospital-
izations tend to have a large recovery time period, i.e., a person
that has the disease and is hospitalized will typically spend multi-
ple consecutive nights at the hospital [42]. Therefore, individuals
located near a hospital but having this alternation behavior will
be considered workers from the hospital. We set a condition to
filter them out, referred as the “Work Filter”. To properly define
the latter filter, let us consider a fixed individual 𝑠𝑖 that appears at
the hospital 𝑙 (𝜑 )

𝑖
∈ 𝐿 (𝜑,𝑟 ) for the total number of 𝜂 nights. Denote

the first night as 𝜂0 and the last night as 𝜂𝑙𝑎𝑠𝑡 , then this means
that this person has stayed at the hospital and did not changed its
location in the middle of the hospitalization period. If 𝜂0 +𝜂 ≠ 𝜂𝑙𝑎𝑠𝑡 ,
this means that in the middle of the whole period, the individual
spent at least one night somewhere else. Although, we could have
false negatives with this decision, e.g., workers that get sick and
stay hospitalized in that exact same hospital. But since the latter
situation would be less frequent, we decided to finally filter out
all people potentially working at hospitals. In other words, in the
detection step we considered individuals as possibly hospitalized
only if they appear at night at the hospital for 𝜂 consecutive nights,
but they neither appear again nor exhibit other transitions.

Moreover, some false positives could also appear for example
when people are located in the same area as a hospital at night
but not because they are hospitalized, but because they are at a
restaurant, hotel, or any other night place that coincidentally is
very close to a hospital. In this case, we cannot filter them, but
because of the quarantine and the mobility restrictions at the initial
stage of the pandemic we believe the false negative rate is low.
In fact, two weeks before the start of the government-mandated
lockdown on March 23rd, the mobility began to reduce significantly
[14, 21, 36]. Furthermore, additional false positives could appear
if we decide to consider every person that meets the conditions
as COVID-19 hospitalized, while in reality it could be for another
cause or another disease. This rate is expected to be low because
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the time in which the detection is made is the start of the epidemic,
and most of the hospital availability was dedicated to COVID-19
patients [23].

In summary, the idea of the algorithm is first filtering out those
individuals living in the same location as a hospital. Then, look at
their mobile phone activity during the night time and select those
users located at night (00:00h-08:00h) at the same area as a hospital
for a certain number of consecutive nights. The period selected to
perform the detection was April 4-30, 2020, although the epidemic
started in London in middle of March. There are two reasons why
we choose April, both related to the validation step that we will
describe shortly. The first reason is that at the beginning of the
pandemic, the reporting of COVID-19 sick and hospitalized people
was unreliable, which can ultimately affect our validation process.
The second reason is because in London there was a temporary
hospital called Nightingale that was created only for COVID-19
patients and it was located at the ExCeL Centre, in an isolated area
outside the city. This hospital turned out to be very useful for the
validation step. Since it opened in April 4th, we had to perform the
detection starting from that date.

Since the COVID-19 virus is very dangerous and hospitalized
people are probably under intensive care needs, to consider only
one night seems to be very scarce. However, we wanted to study all
possibilities, i.e., we explored the values 𝜂 = 1, 2, 3, ...,𝑇 , where 𝑇 is
the total number of nights in the period of study. In the literature,
the average number of consecutive nights that people spend at the
hospital, also known as length of stay, for COVID-19 disease is set
to be at least 4 (see [42]). In the validation study we describe if this
makes any sense with respect to our fine-tuning results.

Algorithm 1 depicts the detection and filtering approach for
obtaining the final set Φ of detected COVID-19 hospitalized indi-
viduals. The approach takes as input the three parameters 𝜑 , 𝑟 , 𝜂
and dataset 𝐷𝑆 containing the aggregated mobile network data of
the individuals in 𝑆 , and geographical information.

Input: 𝐷𝑆 , 𝜑 , 𝑟 , 𝜂
foreach 𝑠𝑖 ∈ 𝑆 do

if ℎ (𝜑 )
𝑖

∉ 𝐿 (𝜑,𝑟 ) & 𝑙
(𝜑 )
𝑖

∈ 𝐿 (𝜑,𝑟 ) , for 𝜂 nights s.t.
𝜂0 + 𝜂 = 𝜂𝑙𝑎𝑠𝑡 then

𝑠𝑖 ∈ Φ
else

𝑠𝑖 ∉ Φ
Output: Φ

Algorithm 1: Detection and filtering algorithm.

4 VALIDATION AND FINE-TUNING
In the above description of the detection and filtering algorithm,
there are some design choices affecting the ratio between false
positives and false negatives that cannot be fine-tuned, such as
deciding to drop people living in the same area of a hospital in
order to benefit the false positive rate. However, as explained above
we believe our choices are the ones that best reduce the overall
rates. There is a set of three parameters that can be fine-tuned in
order to improve the performance of the algorithm, which are 𝜑 :
the level of granularity, 𝑟 : the different ratios around the hospitals,
and 𝜂: the number of consecutive nights at the hospital. The overall

objective of the validation and fine-tuning algorithms is to iden-
tify the parameter configuration for detecting hospitalizations that
matches favorably with the validation data across different settings.

In this study we used the NHS dataset (see Section 2) that con-
tains the number of hospitalizations reported from the start of the
epidemic, collected on a daily basis and at the level of NHS Trust.
We validate across three different settings: (A) with the total num-
ber of patients admitted in hospitals considering all NHS Trust
together, (B) with one of the groups called Barts NHS Trust, and
(C) with the Nightingale temporary hospital. The reason for the
selection of the Barts NHS Trust is because it contains the Nightin-
gale temporary hospital and 6 other hospitals from our list of 74
hospitals in London, admitting COVID-19 patients. We describe
now the numerical results, and a summary table is provided at the
end of the section.

4.1 Setting A
The reported number of patients admitted to all hospitals is an ag-
gregate of all NHS Trust’s number of patients reported in the NHS
validation dataset. In the period of April 4-30, 2020, the reported
number of patients admitted to hospitals in London was 11,177,
which scaled by 26% to capture the mobile network provider’s pop-
ulation coverage, is 2,906. In this setting, we apply the algorithm
for different values of the parameters, starting with the level of
granularity. In the case of tower granularity (𝜑 = 𝑇 ) we explore
three different ratios around the hospitals to obtain the set of cell-
towers associated with each one: 𝑟 = 500𝑚, 750𝑚 and 1𝑘𝑚. The
last parameter we take into account is 𝜂, the minimum number
of consecutive nights an individual must have spent at the hos-
pital to be considered as hospitalized. Considering the postcode
granularity, the most accurate minimum number of nights was 2.
Considering the tower granularity, with the ratio of 1𝑘𝑚 it was at
least 4 consecutive nights, with 750𝑚: 4, and 500𝑚: 3.

4.2 Setting B
In this setting, only the number of patients admitted to Barts NHS
Trust is considered. During the complete period of time, the re-
ported number of hospitalized patients of Barts NHS Trust is 1,098,
of which 26% is 285. For the postcode granularity, the most ac-
curate minimum number of nights was 2. Considering the tower
granularity, with the ratio of 1𝑘𝑚 it was at least 5 consecutive
nights, with 750𝑚: 4, and 500𝑚: 3. Note that the parameter sets
({𝜑 = 𝑇, 𝑟 = 0.75, 𝜂 = 4} and {𝜑 = 𝑇, 𝑟 = 0.5, 𝜂 = 3}) that provide
the best match between predicted and actual hospitalizations is the
same with the corresponding parameter set of setting A.

4.3 Setting C
In this last setting we consider the Nightingale temporary hospital.
Since the validation data does not contain any individual hospital
information, the real number of patients admitted in Nightingale at
its individual level was not provided. This information was found
in other sources from the press such as [34]. The total number of
reported hospitalizations in this hospital was 51, therefore scaling
by 26% gives 13. The results indicate that the most accurate mini-
mum number of nights, with postcode granularity was 11 nights,
and with tower granularity, it was: 10 (1𝑘𝑚), 4 (750𝑚), and 4 (500𝑚).
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The parameter set ({𝜑 = 𝑇, 𝑟 = 0.75, 𝜂 = 4}) providing the best
match between predicted and actual hospitalizations was the same
as the corresponding parameter set of setting A and B.

4.4 Correlation study
For each setting, the daily robust Spearman correlation coefficient
𝜌 between the algorithm results and the reported daily cases in the
validation data, is obtained. In the first setting A, where all hospitals
are considered, depending on the ratios and the minimum number
of nights, the correlation results were: 1km (≥ 4 nights): 0.885, 750m
(≥ 4 nights): 0.896, 500m (≥ 3 nights): 0.826. All the correlations are
high, the maximum in the case when the 750𝑚 ratio is chosen. In
setting B, where the Bart NHS Trust is studied, the resulting daily
robust correlation coefficient is, for 1km (≥ 5 nights): 0.801, 750m
(≥ 4 nights): 0.862, 500m (≥ 3 nights): 0.638. Again, they all are high
values, but the maximum number is when the 750𝑚 ratio is chosen.
Daily correlation in setting C, for Nightingale temporary hospital
cannot be computed because we only have total cases information
from this hospital in the overall period, not daily reported cases.

4.5 Summary of results
Table 3 summarizes the results in the validation and fine-tuning
study that we described above. Note that the parameter configura-
tion that consistently matches the validation data across different
validation settings, while maintaining a high value of correlation 𝜌

between the estimations and the validation data (marked in bold),
is {𝜑 = 𝑇, 𝑟 = 0.75, 𝜂 = 4}, which means that the minimum number
of consecutive nights is selected to be at least 4, the granularity in
the detection is set to be at the cell-tower level, and the area around
the hospitals to choose the towers is set to be of 750 meters.

Table 3: Results in the validation study.

Setting Description 𝜑 , 𝑟 Min. 𝜂 𝜌

A All 𝜑 = 𝑃 2 0.623
Hospitals 𝜑 = 𝑇 , 𝑟 = 0.5 4 0.885

𝝋 = 𝑻, 𝒓 = 0.75 4 0.896
𝜑 = 𝑇 , 𝑟 = 1 3 0.826

B Barts 𝜑 = 𝑃 2 0.637
NHS Trust 𝜑 = 𝑇 , 𝑟 = 0.5 5 0.801

𝝋 = 𝑻, 𝒓 = 0.75 4 0.862
𝜑 = 𝑇 , 𝑟 = 1 3 0.638

C Nightingale 𝜑 = 𝑃 11 X
Hospital 𝜑 = 𝑇 , 𝑟 = 0.5 10 X

𝝋 = 𝑻, 𝒓 = 0.75 4 X
𝜑 = 𝑇 , 𝑟 = 1 4 X

5 RISK MAPS
In the previous sections we described our approach for detecting
potential hospitalizations using mobile network data. In this sec-
tion we describe how diverse risk maps based on this data can be
obtained. The main idea is to explore the mobility of the individuals
detected as hospitalized, during the period of two weeks prior to

their first day of hospitalization. The two weeks duration was se-
lected because this was the maximum estimated incubation period
of COVID-19, at least at the initial stage of the epidemic [39], in
which there were no variants of the virus and people were not yet
vaccinated. The approximate spatio-temporal trajectory of a mobile
phone and its user can be reconstructed by linking the mobile net-
work data associated with that phone with the geographic location
of the cellular tower, or the postcode containing that tower.

5.1 Algorithm for obtaining the risk maps
To create a risk map, two things must be decided. First, the gran-
ularity, and second, the measure of risk. The granularity, that we
define as the parameter 𝜆, can be postcode levels (units, sectors, or
districts), or census levels (OA, LSOA, MSOA, or Boroughs). Once a
granularity is decided, a time-lapse choropleth map can be obtained,
which can be turned into a movie depicting the evolution of the
map through time. Unfortunately, we were not be able to obtain the
mobility data for the whole day, but only for the aggregated eight
hours at night from 00:00-08:00. In the future, when this data is
available we can apply the same method to obtain a complete daily
mobility based risk map, but for now we believe it is important to
show the potential advantages of this approach, even with reduced
data, since our work can motivate further research in the area.

The measure of risk, in our case, depends on the number of
people detected as hospitalized that are at the same time in the same
location, twoweeks prior to the moment of their hospitalization, i.e.,
it can be seen as an ‘a-priori’ measure of risk. A higher number of
people located at the same time in a fixed area increases the risk of
infection for everyone else, due to exposure [10, 24]. This measure
of risk could also depend on the time spend by each person in that
location, i.e., the longer an infected person is in a fixed location,
the more risk there is. In fact, from epidemiology models, several
different measures of risk can be computed, but supporting which
is the best epidemiology model is beyond the scope of our work.
When a particular measure of risk is computed, it can be considered
as a weight for each specific area and based on that, a color can be
assigned to each area and a risk map can be obtained.

As depicted in the Algorithm 2 for obtaining the risk maps, for
each granularity and each day, we can compute different individual
risk maps, since the risk measures vary through time and space.
A risk map movie1 can be obtained if we consider the time-lapse
set of daily risk maps for a fixed granularity. This result can help
capturing the evolution of the epidemic spread pattern and the
spatial risk of contagion. The parameters involved in Algorithm 2
are the following:

• 𝑇 is the total number of days in the complete period of time.
• 𝑡 = 1, ...,𝑇 is the daily time steps.
• 𝜆 is the parameter that selects the geography to plot the risk
map (e.g., Borough, Postcode District, etc.).

• 𝐷𝜆 is the dataset containing the polygon geometries for
plotting the map depending on the selected 𝜆.

• 𝐴 is the total number of areas in the map.
• 𝑙𝑘 ∈ 𝐷𝜆 , for 𝑘 = 1, ..., 𝐴, are the location areas in the map.
• 𝑝 (𝑙𝑘 ,𝑡 ) is the measure of risk of area 𝑙𝑘 at time 𝑡 , that depends
on the number of persons detected as hospitalized (𝑠𝑖 ∈ Φ)

1An example of risk map movie can be found here.

https://networks.imdea.org/team/research-groups/data-transparency-group/
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that are at the same time in the same location, in the period
of two weeks prior to their hospitalization.

• 𝑎
(𝑙𝑘 ,𝑡 )
𝑖

, for 𝑖 = 1, ..., |Φ|, counts the number of users (detected
as hospitalized) located in area 𝑙𝑘 at time 𝑡 .

Input: Φ, 𝜆, 𝐷𝜆

foreach 𝑡 = 1, ...,𝑇 do
foreach 𝑘 = 1, ..., 𝐴 do

foreach 𝑖 = 1, ..., |Φ| do
if 𝑠𝑖 is in area 𝑙𝑘 at time 𝑡 then

𝑎
(𝑙𝑘 ,𝑡 )
𝑖

= 1
else

𝑎
(𝑙𝑘 ,𝑡 )
𝑖

= 0
𝑝 (𝑙𝑘 ,𝑡 ) =

∑
𝑠𝑖 ∈Φ 𝑎

(𝑙𝑘 ,𝑡 )
𝑖

Risk Map (𝜆, 𝑡 )
Output: Risk Map Movie (𝜆)
Algorithm 2: Algorithm for obtaining the risk maps.

5.2 Comparison with static maps
We obtained various risk map movies at different granularities.
Figures 2 and 3 show, as examples, the average risk map versus the
static census map, at Borough and District levels, respectively. The
color range in the risk map, from white to purple (less to higher),
means that the more purple an area, the more dangerous (in case of
a risk map) it is. Areas with higher weight, are those where more
sick people appeared there or spent time. From these risk maps we
can obtain statistical information to gain further insight about the
epidemic evolution. In average, the top 10 most dangerous areas at
the Borough level were: Westminster, Newham, Lambeth, Tower
Hamlets, Camden, Kensington and Chelsea, Southwark, Hackney,
Islington and Brent. At the District level they were: E1, NW8, SE1,
E6, W10, SW9, NW1, W2, N19 and SW17. Although interpreting
one by one the demographics and the reasons that the top 10 areas
appear to be the riskiest ones is beyond the scope of this paper, we
note that most of them are well known areas with intense night life
due to the presence of restaurants, bars, etc. Let us now compare
our risk maps with the static population map resulting from the
census data [12], and let us compute the correlations between the
two types of maps.

Variability in the spatial dimension: Figures 2 and 3 show
the static census-based population maps (down), for Boroughs and
Districts, respectively. As it can be seen at first sight, the average risk
maps (up) look very different in comparison with their respective
analogous population map (down). In fact, if we look at the risk map
in Fig. 2 we see that the most dangerous borough is Westminster,
which has the highest value on April 24th (Friday). Meanwhile, if
we look at the census map in Fig. 2, we see that Croydon is actually
the borough with the highest population and it is not in the top 10
most dangerous boroughs. Moreover, the most dangerous postcode
district is E1, in average and most of the times. The highest value
in E1 is also on April 24th, 2020. Although, according to the census
data, CR0 is the district with the highest population density, and it
was not found within the top 10 most dangerous districts.

Variability in the time dimension: Not only do the risk maps
differ, in average, from the corresponding population map, but if

Figure 2: Risk map (up) versus Census map (down), at bor-
ough level.

Figure 3: Risk map (up) versus Census map (down), at district
level.

we add the time dimension and consider the different dynamic
risk maps for each night, this disagreement increases. To measure
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these differences numerically, for each granularity level, we also
computed the correlations between the daily risk maps and the
population map. The average correlation and standard deviation
are shown in Table 4, for each granularity level.

Table 4: Results of the correlation study between the risk
map and the population map.

Level Average correlation Std. Dev.

Borough 0.1462 0.0242
District 0.0959 0.0275

The resulting low correlations indicate that the risk maps could
not be inferred by simply taking into account the population density,
i.e., the areas of highest risk are not necessarily the most densely
populated ones, but a result of multiple factors which may be better
reflected when taking the spatio-temporal information of higher
granularity like the one proposed in this paper, as opposed to static
data like census.

Moreover, there is also some variability within the group of
individual daily risk maps and, more concretely, the areas of highest
risk vary from day to day. Additionally, if we use the time dimension
to compute what are the most dangerous days for the top 10 (in
average) most dangerous areas, we discover that most times, these
are weekends. In fact, if we consider the average between all the
top 10 most dangerous areas, the top 1 most dangerous day is April
3rd (Friday). And the top 2 and 3 most dangerous days are also from
early April, i.e., the 4th (Saturday) and the 5th (Sunday).

5.3 Bounding box analysis
The risk maps can be computed aggregating data to the desired
level of granularity, e.g., postcode or census levels. However, note
that the available data is highly granular, and we have information
about the location of the individuals at the level of cell-towers. That
means that additional mobility studies can be performed, for exam-
ple, computing for each user the bounding box that contains the
set of locations on which the user moves. Then, for each individual,
we can compute the area or the diagonal of their bounding box,
or any other measure that aims to represent the extent of their
mobility. In our case, for the (detected as) hospitalized individuals,
the average diagonal of their bounding box was 8.5km, with a stan-
dard deviation of 10.27km. Meanwhile, for the rest of individuals,
the average diagonal of their bounding box was 5.29km, with a
standard deviation of 5.82km. We performed a hypothesis test com-
paring the average diagonals of the bounding boxes for each type
of individual, and with significance level of 𝛼 = 0.05 the results
were statistically significant. The test statistic is 16.61, much higher
than the critical point 𝑧𝛼=0.05 = 1.645, which results in rejecting
the null hypothesis, i.e., with 95% of confidence, the data favors the
alternative hypothesis that the hospitalized users have an average
mobility higher than the ones not detected as hospitalized.

As stated in the introduction, several approaches can be used
to obtain a risk map. However, most of them do not take into ac-
count the spatio-temporal dynamics of the individual’s behaviour.
As we could see in the comparison against the census maps, these
are static outputs resulting from long-time studies (usually static

for years), describing a single characteristic per map, e.g., popula-
tion, housing, income, retail, etc. Meanwhile, an epidemic spread
is of multidimensional nature, and mobility of individuals could
explain this multiple factor dependant event, at once. Other maps
for epidemics could be obtained based on the number of cases or
deaths in certain areas (either reported by health or governmental
institutions, or obtained through surveys), although, they cannot
depict risk based on mobility and they are usually obtained for
complete days, i.e., they cannot be plotted hourly nor in real time.
Epidemic risk maps based on mobile network data have the poten-
tial to describe the epidemic spread and evolution in different and
more granular spatio-temporal settings.

6 DISCUSSION
In this section we discuss the ethical implications, the limitations,
and the relevance of the proposed approach for innovative uses of
network data beyond communication and for impact in the real
world.

6.1 Ethical implications
As stated in Section 2, the mobile network data used in this paper
has been reviewed and validated by the operator with respect to
GDPR compliance (e.g., no identifier can be associated to person).
A limitation is that the data do not have explicit user consent for
these studies, although it has been used in previous analytic studies,
such as [31]. Data collection and retention at the mobile network
operator are in accordance with their terms and conditions and the
local regulations. Any re-sharing of the data with 3rd parties even
for research purposes is prohibited. No personal and/or contract
information was available for this study and none of the authors
of this paper participated in the extraction and/or encryption of
the raw data. The temporal resolution of mobile network data,
reflected in the timestamps of the user’s activity in this data, is at
the aggregated eight hours level. With respect to the algorithm, it
is applied directly to the anonymized data, and the results cannot
leak any private information. Furthermore, we have successfully
obtained ethical approval for this research from our institutions.

6.2 Limitations
The proposed approach aims to detect potential hospitalizations
and risk maps based on past mobility information. A limitation
is that epidemic risk is not only based on severe cases, but also
depends on the asymptomatic cases spreading the disease. It is in
fact a complex matter and an interplay between many factors. How-
ever, the proposed approach could be relevant in future epidemic
outbreaks, since in the beginning very little is usually known about
new epidemic viruses. Furthermore, mobile network data is always
there at disposal, ready to be studied and transformed into models
and tools that can give us valuable insights on the extent, spread
and evolution of the outbreak. We are currently studying how to
expand our approach, to detect potential COVID-19 positives that
could be more relevant now, e.g., people that have mild symptoms
and stay at home doing quarantine.
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6.3 Innovation and real-world impact
The ubiquity of mobile devices and the unique advantages of cellular
networks (e.g., availability and high penetration rates) have facil-
itated an increase in the innovative uses of network data beyond
communication, such as the several large-scale human mobility
research studies based on mobile network data. One of the main
barriers for organizations to adopt existing technologies, such as
contact tracing apps, is the complexity of usage along with their
requirements. For example, the exposure notification apps devel-
oped by Apple and Google with Bluetooth data were not easy to
be adopted because they required digital certificates and having
users to install an application was an obstacle. Meanwhile, mobile
network data, in general, has two major strengths: (i) high penetra-
tion rates, i.e., most people take cellphones with them every day;
(ii) no need for incentives and low collection cost, i.e., the network
providers already have this data ready for further research and no
extra cost or additional incentives need to be introduced for data
collection. In fact, the mobile network signalling data that is used
in this paper has the additional advantage of allowing to capture
the mobility of the users all the time, not just when they generate
active data, e.g., voice or SMS communications.

Our approach is the first step in the direction of using mobile
network data to derive equivalent estimations without the need
of healthcare providers’ interventions, digital certificates or user
adoption. The proposed approach is generic and configurable, and it
can be applied to different cities or countries, depending on the data
available. Future methods can be developed based on this idea and
telecommunication companies could implement very easily fully
automated services to, e.g., estimate the dangerous areas or risky
contacts and send an SMS to warn individuals when they enter a
high risk area as a reminder to take extra protective measures.

Furthermore, our algorithm for detecting COVID-19 hospital-
izations can be interpreted as a severity detection approach which
could also have high real-world impact if used for identifying health-
care system burden due to an increased number of hospitalizations.
Moreover, computing a measure of risk of an area experiencing an
outbreak, can be very helpful for society because it can help indi-
viduals take extra protective measures, as well as first responders
and decision makers in evaluating the spread of severity, the health-
care system burden, the ‘a-priori’ higher risk areas where people
potentially got infected, and the advantages and disadvantages of
alternative courses of action. Additionally, this is closely related
to spatial hotspot mapping, i.e., finding regions with significantly
higher rates of generating cases of certain events. In this context,
a risk measure can be used to detect future emerging high risk
regions using forecast methods with time series data [45, 52].

Overall, we conclude that the rich spatio-temporal information
extracted from mobile network data may benefit both the mobile
technologies and the policies that are being developed against ex-
isting and future epidemics.

7 CONCLUSIONS AND FUTUREWORK
In this paper we propose an approach to detect potential COVID-19
hospitalizations and epidemic risk maps, based on mobile network
data containing detailed spatio-temporal information about mil-
lions of cellphones at various scales. The methodology consists of

three phases: (i) detecting potential COVID-19 hospitalizations, (ii)
performing a validation and fine-tuning study, and (iii) analyzing
the mobility patterns of the final set of hospitalized individuals,
prior to their hospitalization, for obtaining a series of risk maps.

The approach detected 2,866 potentially hospitalized individuals,
yielding a 98.6% agreement with released public records of patients
admitted to hospitals in London, in the same time frame. We com-
pare our proposed risk maps with static census-based maps and the
results show that the areas of highest risk are not necessarily the
most densely populated ones. This disagreement increases when
we add the time dimension and consider the different dynamic risk
maps for each night versus the static map. We computed the top
10 most dangerous areas (in average) at different granularity levels
(e.g., postcode districts and boroughs) and we note that most of
them are well known areas with intense night life due to the pres-
ence of several tourist places, restaurants, bars, etc. We also used
the time dimension to compute the most dangerous days for the top
10 most dangerous areas and we discovered that most times these
are weekends. We also found that the areas of highest risk vary
from day to day. Finally, we found that the individuals detected as
hospitalized by our approach, have had a statistically significant
higher average mobility than the ones not detected as hospital-
ized. The conclusion is that the multidimensional characteristic of
the risk of an area is better reflected when taking spatio-temporal
information of high granularity like the one proposed in this paper.

For future work, with the complete data containing the mobility
information during the whole day, we plan to have a more general
vision of how the mobility of people influences the risk. We will
also be able to study a more granular time dimension (e.g., hourly)
and time-dependent similarities or differences (e.g., weekday vs
weekend, or between morning, noon, afternoon, evening and night).
Furthermore, once we manage to compute a measure of risk for
each area and time interval, we could use time series analysis to fit
a model that estimates the future risk for each area. An exogenous
variable could be the number of other healthy people found in
the same area at that exact time, which can influence (by auto-
correlations) the number of sick people and can be entered as extra
information to the model in the moment of forecasting the next
future day (assuming we know how many people are going to be
there). Our proposed approach is generic and can be configured
using different criteria, such as the one we are currently studying
that consists of detecting home confinements and fine-tuning other
parameters like the incubation period. Finally, combining our model
and a contagion risk alert system like the one proposed for H1N1
virus by [18], we could also provide an alert system based on the
identification of risky physical contacts.
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